(a)	(i)	<i>gene</i> length of DNA; codes for a (specific), polypeptide / protein / RNA;	max 1	
		<i>allele</i> alternative form of a gene; found at a, locus / particular position on, a chromosome;	max 1	
	(ii)	assume allele refers to coat colour allele		
		 (coat colour) gene / alleles, only on X chromosome; A no (coat colour), gene / allele, on Y chromosome male cats, XY / only have one X chromosome; males have only one (coat colour) allele / cannot have two (coat colour) alleles; 	ır)	
		need black and orange alleles for tortoiseshell colour;	2	
(b)	-	tal genotypes $C^{r}C^{r} \times C^{w}C^{w}$; etes C^{r}, C^{w} ;		
	$F_1 g \epsilon$	enotypes <u>and</u> phenotypes 1 mark:		
		enotypes (all) C ^r C ^w nenotypes (all) pink;		
	$F_2 g \epsilon$	enotypes and phenotypes 1 mark:		
	F ₂ ge	etes C ^r , C ^w C ^r , C ^w ; enotypes C ^r C ^r C ^r C ^w C ^r C ^w C ^w C ^w nenotypes red pink (pink) white;		
	acce	tio 1:2:1; pt other symbols if key given. pt r and w as symbols without key.	6	
(c)	(i)	65; 130; 65;	3	
	(ii)	0.138 + 0.007 + 0.061; (or other suitable working) 0.206 – 0.208; 2 marks for correct value if no working shown ecf for both marks but calculated value must be to three decimal		
	()	places	2	
	(iii)	support, figure lower than 5.991 / figure lower than critical value;<i>R</i> 'support' on its own.		
		<i>cf applies if value in (ii) is incorrect</i>	1	
				[16]

1.

2.	named characteristic; named environmental factor; (mark first answer only)	2	[2]
3.	 ref to operon; normally repressor substance bound to operator; prevents RNA polymerase binding (at promoter) / prevents transcription; lactose binds to repressor; changes shape of protein molecule; unable to bind (to operator); RNA polymerase binds (at promoter) / transcription occurs / genes switched on; AVP; e.g. production of lactose permease / production of beta-galactosidase; 	max 5	[5]
4.	a change in the genetic material; unpredictable / AW; extra detail; e.g. addition / substitution / deletion / frame shift / small part of chromosome / may code for different protein / may code for no protein		[2]
5.	I mark max for general effect of mutations: mutation may give different, amino acid / primary structure; A ref stop codon some mutations alter, molecular shape / tertiary structure / binding; max 3 for explaining data in Table: so unable to, accept / transport, HCO ₃ ⁻ ; unable to bind ATP; so increase in acidity / decrease in pH; effect on mucus; effect on enzyme(s) /ref pH optimum of enzyme(s); poor digestion of, protein / lipid / starch; AVP; e.g. some mutations, give some transport / have less effect. > 33% (of norm) allows normal digestive function / < 6% [A very low] does not.	max 3	[3]

6.	(a)	(i)	award both marks for correct answer		
			10 000 / 800 000 (× 100); 1.25 / 1.3 / 1(%);	2	
		(ii)	R any reference to energy / light missing the plant		
			reflected (off plant) / only certain wavelengths of light can be, absorbe	ed /	
			used; ora absorbed by / hits, non-photosynthetic parts; e.g. bark passes through leaf / misses chlorophyll / misses chloroplasts; some is heat that is used in evaporation / respiration;	max 2	
		(iii)	bacteria / named bacterium decomposer; (Nitrobacter, Nitrosomonas)	1	
		(iv)	take the first 2 answers:		
			death / dead remains; excretion; R waste products		
			egestion; other suitable method; e.g. insects moulting hatched eggs moulting (fur / feathers) R <i>leaves</i>	2	
	(b)	Prim	ary consumers are eating and		
		prod diffic	ucers have, cell walls / cellulose; ora cult to digest / much material, wasted / egested; gy used by gut microorganisms; ora		
			n material cannot be eaten (by primary consumer); ora	3	[10]
7.	(i)		nid cut by restriction enzyme; ecific sequence;		
		same	e enzyme as used to cut (insulin) gene;		
			y ends / described; complementary sticky ends;		
			e seals (sugar-phosphate) backbone / AW;	max 4	
	(ii)	credi	it any two from the following:		
		1	antibiotic resistance (gene) introduced and survivors have plasmid;		
		2	fluorescent marker (gene) introduced and glowing bacteria have plasmi	d;	
		3	identify bacteria producing insulin using antibodies;	2	[6]

8. *referring to pig insulin:* ethical / religious, reasons; incompatibility / lack of tolerance / immune response; ora not exactly the same as / less effective than, human insulin; ora

referring to human insulin from bacteria: engineered insulin is cheaper; ora greater supply of engineered insulin; ora

[1]

1

allow max 5 for following: <u>transcription;</u> DNA unzips / H bonds break; exposing required, gene / sequence of bases; RNA nucleotides align with DNA; U with A, A with T, C with G, and G with C; RNA polymerase; mRNA formed (using DNA strand as template); leaves nucleus through pore;

> *allow max 5 for following:* <u>translation;</u> mRNA attaches to ribosome; tRNA brings amino acid (to, ribosome / mRNA); each tRNA attached to specific amino acid; tRNA binds to mRNA using complementary, base triplet / anticodon; peptide bond formed between amino acids; DNA / mRNA, (nucleotide / base) sequence determines sequence of amino acids;

AVP; e.g. 2, base triplets / codons, in ribosome AVP; e.g. ref. to : start / stop, codons polysomes large and small subunit in ribosome Mg²⁺

[10]

10.	(a)	fron	below / ventral / AW; A idea of brain being seen from below R upside down, looking upwards	1
	(b)	(i)	 reject choice of answers, accept any reasonable spelling A cerebrum / cerebral hemisphere / cerebral cortex / frontal lobe; ignore refs to right or left R <i>incorrect lobe</i> B pituitary (gland); R <i>hypothalamus</i> C cerebellum; D medulla (oblongata) 	4

		 (ii) control of breathing; control of heart rate; control of circulation; control of swallowing / salivation / vomiting reflex; 	2	
	(c)	If blood hormone concentration rises		
		inhibits output of trophic hormones by pituitary gland; which inhibits output of hormones by endocrine glands; blood hormone concentration falls to normal levels; ref. negative feedback; <i>ORA</i>	max 2	[9]
11.	(a)	 (apical / terminal) bud is source of auxin; auxin inhibits growth of side shoot / ora; remove bud and auxin concentration drops; (this allows) cell division / elongation to take place; ecf - marking points 2 and 3 if growth regulator or hormone used instead of auxin 	max 3	
	(b)	award two marks if correct answer (80%) is given		
		award one mark for calculation if answer is not correct		
		(90 – 50 = 40) 40 / 50 × 100; 80%;;	2	
	(c)	no growth until day, 8 / 10; auxin moves out of paste / AW; inhibits growth; growth occurs after, 8 / 10, days; because auxin, levels fall / 'used up';	3	[8]
12.	(i)	 max 1 for meaning of term attached to an insoluble material / AW; max 2 for description (micro)encapsulation / (trapped) in alginate beads; adsorption / stuck onto, collagen / clays / resin / (porous) glass; cross linkage / covalent / chemical, bonding to, cellulose / collagen fibres; gel entrapment / trapped inside gel e.g. silica (lattice / matrix); 		
		partially permeable membrane (polymer) microspheres;	3	

gel entrapment / trapped inside gel e.g. silica (lattice / ma partially permeable membrane (polymer) microspheres;

(ii) *any three from the following*:

	(11)	any three from the following:		
		 urine can be processed / no problem of removing urine / AW; pure / drinkable / useable, water produced; A water recycled space saving / less water needs to be taken into space; payload limit / weight reduction / AW; no problem in separating enzyme from products / product not contaminated; ref. to longer shelf-life of enzyme; no need to take more enzymes into space / enzymes reusable; A enzymes recoverable 		
		AVP; e.g. larger surface area of enzyme exposed, more stable at extremes, ref. to ease of use (of bioreactor)	3	[6]
13.	(i)	adding / using, water to break, bond / ester bond, (in molecule); A breakdown into smaller molecules	1	
	(ii)	 matrix, protects / stabilises, enzyme / lipase; functions, at optimal rate / more efficiently, at higher temperature / 45 °C; A greater activity / AW ref. to soluble lipase begins to denature (reducing activity); ora functions, at optimal rate / more efficiently, at lower pH; ref. to presence of fatty acids changing pH; ref. to ionic bonds breaking (in soluble lipase); ora 		
		AVP; e.g. ref to industrial uses ref to effect on R groups	max 4	[5]
14.	(a)	starts with previously uncolonised area / bare ground / bare rock / AW; ref to pioneer species / named pioneer; series of recognisable, seres / stages; progresses to, climax / final equilibrium stage;	max 2	
	(b)	stabilise environment; soil development / increase humus / organic material; change soil pH; hold more water; release more minerals or nutrients / increase N content or fix N / hold ions; form microhabitat / reduce exposure / provide shelter / reduce erosion;	max 3	

(c) *any two from following*:

	grazing; burning; mowing / application of fertilizer / application of selective herbicide; exposure to wind; grass able to continue to grow (linked to a statement above);	2	
(d)	increases; plants at later stages are large / plants in early stages are small; trees / shrubs. are woody, appear later in succession;	2	[9]

15. *max 1 mark from following:*

- 1 economic definition of sustainable; e.g. similar quantities of timber can be harvested year on year
- 2 grants for planting forests / management schemes;
- 3 planting to ensure sustainable harvest rate;

max 3 marks for planting strategy:

- 4 trees not planted too closely together;
- 5 support young trees to prevent damage e.g. from grazing animals;
- 6 species planted that are suitable for prevailing conditions / native spp;
- 7 softwood sp. / conifers / named conifer / fast growing sp. planted;
- 8 deciduous broadleaved species around edges for aesthetic reasons;
- 9 creates different habitats / named habitat / protected habitats/ some fallen trees left to rot;

max 3 marks for felling/cropping strategy:

- 10 ref. to clear felling having negative effects e.g. soil erosion;
- 11 only mature trees removed / selective felling / individual trees;
- 12 some clearings / rides / glades in woodland / strip felling;
- 13 control of, pests / diseases / fire prevention;
- 14 ref to coppicing / pollarding;
- 15 (deciduous trees) regrow from base/ idea of rotation/ cycle;
- 16 standards / large trees not coppiced, as encourages biodiversity;

[7]

16. population; habitat; community; ecosystem;

> (first) trophic; **R** *tropic* producers/(photo) autotrophs/autotrophic; (primary) consumers/heterotrophs/heterotrophic/herbivore;

R carnivore/other qualified consumer

17. *1 mark per correct row*

Look for both ticks and crosses.

If a table consists of ticks ONLY or crosses ONLY, then assume that the blank spaces are the other symbol.

If a table consists of ticks, crosses and blanks then the blanks represent no attempt at the answer.

Nucleotides line up along an exposed DNA strand.	\checkmark	√ ;
The whole of the double helix 'unzips'.	\checkmark	X ;
Uracil pairs with adenine.	×	√ ;
A tRNA triplet pairs with an exposed codon.	×	Х;
Both DNA polynucleotide chains act as templates.	\checkmark	√ ;
Adjacent nucleotides bond, forming a sugar-phosphate backbone.	\checkmark	√ ;
The original DNA molecule is unchanged after the process.	×	√ ;
Adenine pairs with thymine.	\checkmark	√ ;

18. (a) (clinically) obese/obesity; **R** morbidly obese

- (b) *Diet B* essential fatty acids/linoleic acid/linolenic acid/fat soluble vitamins/A/D /E/K; *Diet C* sugars/named sugar/starch; A *vitamin C*(c) (i) B; energy intake (of B) is lower ORA;
 2
 - (ii) energy intake is less than energy used ORA;

[7]

7

[8]

1

[9]

[5]

(d) (no fruit may mean) scurvy/described; **R** vitamin C deficiency unless qualified

fatty substar coronary art narrows lum reduces, blo CHD/heart a thrombosis/o	ien; od/oxygen, delivered to <u>heart muscle;</u> ittack/angina;	
stress on live stress on kid due to exces		
AVP; AVP; e.g.	deposition of subcutaneous fat/AW obesity stress on joints anorexia/bulimia/obsession on diet constipation bowel cancer hypoglycaemia giddiness lethargy/fatigue/tiredness [but R 'lack of energy']	3 max

19.	(i)	tree cut, close to ground/down to its stump/AW; R <i>down to trunk</i> new growth forms/AW; harvest after a number of years/process repeated; rotational coppicing/AW; ref to how coppicing increases biodiversity	
		e.g. increasing light intensity;	max 3
	(ii)	(standards) large planks/AW; A used as <i>timber</i> A <u>standards</u> more valuable/AW (coppice) small diameter wood/fencing/hurdles/garden furniture/charcoal/firewood/matches; (coppice) continuous, source of timber/income; recreational use/nature reserve; A ref to tourism	max 2

[3]

20.	 release of carbon dioxide; from fungal respiration; available for photosynthesis/carbon fixation; extracellular digestion; named enzyme(s); release of, inorganic substance/minerals/named mineral; R <i>nutrients, nitrogen</i> A <u>nitrogenous compound</u> uptake through, <u>roots/root hairs;</u> named use of mineral in plants; ref. to humus; ref. to beneficial role of humus in soil; e.g. increase water retention, improve soil structure, stabilize soil 			max 4	[4]
21.	(a)	(i)	sympatric;	1	
		(ii)	ranges of two species, overlap/close together/AW;		
			no geographical barrier; ref to behavioural/genetic/physiological/prezygotic barrier; correct ref to named area of map;	max 2	
	(b)	ref to ref to inter	o mate selection by size; ie large with large or small with small o monogamy; o intermediate sizes, at disadvantage/selected against/ora; mediate do not pass on <u>alleles</u> /ora; ested reason why intermediate at disadvantage/ora	max 3	
	(c)	selec large	le produces a lot of eggs; ts male, that can store lots of eggs/has a large pouch/ora; males fertilise many eggs/ora; ce of more offspring surviving;		
			female and small male produce intermediates/ora; mediates at disadvantage/ora;	max 2	[8]
22.	(i)	cross	ing over; treat chiasma(ta) as neutral	1	
	(ii)	propl	nase;	1	
	(iii)		different, alleles/base sequence of DNA; ter chromatids have same alleles/non sister have different alleles	1	[5]

23. two different genes represented in each gamete ie Q or q and R or r; four correct combinations ie Q and R, Q and r, q and R, q and r;

[9]

24.	(i)	(parental genotypes:)	AaBb	×	aabb;	
		(gametes:)	AB, Ab, aB, ab		(all) ab;	
		(offspring genotypes:)	AaBb, Aabb, aaBb	o, aabb;		
		(offspring phenotypes:)	grey body/normal black body/normal			
		[sequence of phenotypes r	nust match genotypes	for mark]		
		(phenotypic ratio:)	1:1:1:1;			
		apply ecf.				
		accept alternative symbol	s if a key is given, but	if no key given	<i>max 4</i> 5	
	(ii)	80,80,80,80;			1	
	(iii)	(working) 0.1125 + 0.312 = 0.925; A 0.9/0.92/0.93	5 + 0.05 + 0.45;			
		ecf if correctly use wrong	figures from (ii)		2	
	(iv) yes (but no mark for yes on own)					
		as calculated figure is sma	aller than 7.82;			
		ecf applies to value calcu	lated in part (iii)		1	I
25.	(a)	 due to mutation; A has changed, gene/a random; irradiation/other na genetically enginee altered, mRNA/enz selective breeding; 	allele/base sequence/I med mutagen; red;	DNA;	max 2	
		 (ii) light <u>intensity;</u> carbon dioxide; water/humidity; temperature; mineral content of s pH; lighting regime; 	soil/potting compost; I	R nutrients	max 2	

(b)	<pre>wild type no significant/very little, difference; those with water taller/ora; 18 day result an anomaly; ref to figures from table; need two figures at same age with correct</pre>		
	dwarf those with gibberellin taller; difference greater as they get older; still shorter than wild type; ref to figures from table; need two figures at same age with correct units		
	only penalise lack of units once		
	calculation of % difference between treatments for either wild type or dwarf;	max 5	
(c)	dwarf unable to produce (active) GA/ora; dwarf lacks enzyme for (active) GA formation/ora; details of why dwarf lacks enzyme; A <i>has, recessive/mutant allele</i>	max 2	[11]
(i)	R <i>questions</i> embryo, potential human/member of society/right to life/killed/AW; may be from abortion; scientist making decision for use of embryo/consent may not be required; parents may not know fate; religious objection; may involve cloning; some stem cells can be obtained instead from umbilical cord; AVP;	1 max	
(ii)	treat/cure for, anaemia/sickle cell anaemia/named blood disease; blood, for transfusion/to replace loss; treat, immune disorders/SCID/lupus; treat, non-Hodgkins lymphoma/some types of cancer/leukaemia; treat/cure for, Alzheimer's disease; treat/cure for, Parkinson's disease; treat paraplegics/repair injury to, nerves/spinal cord; treat, genetic disorders affecting nerves/Huntington's/Tay Sachs/Lou Gehrig's; treat multiple sclerosis/motor neurone disease; AVP; eg. stroke/brain damage/retinal repair AVP; <i>must be relevant to use of blood cells or neurones</i>	2 max	
	11 1, musi de relevant to use of didda cetts of neurones	2 111ax	[3]

26.

27.	(i)	indicates the range of results; on either side of the mean; indicates, variability/(standard) deviation/(standard) error; indicates if data sets significantly different;	2 max		
	(ii)	no/small, increase/figs. quoted; lag phase; adjust to conditions/detail of adjustment; produce enzymes; AVP;	2 max		
	(iii)	more rapid growth in non-deficient cells/ora; figures in support from both axes of graph; low ribose in G6PD deficient cells/ora; less available to, parasites/ <i>Plasmodium</i> ; less production of RNA/ribonucleotides; less available for transcription; inhibited protein synthesis; less protein available for, reproduction/growth/cell division;	4 max	[8]	
28.	deficiency gives resistance to malaria; deficient/resistant, individuals more likely to survive; alleles, passed to next generation; natural selection; presence of <i>Plasmodium</i> is selection pressure; frequency of this allele increases; phenotype more common in population; AVP; e.g. others more likely to die of malaria		3 max	[3]	
29.	(a) (b)	 (dominant) epistasis; ref. frame shift; ref. three extra, triplets/amino acids; may introduce stop code so shorter, polypeptide/protein; may increase length of, polypeptide/protein; may alter, shape/3' structure, of, polypeptide/protein; affects active site; protein/polypeptide, may lose function; protein/polypeptide, may have different function; 	1 max 4		

Parental phenotypes: White Leghorn x Red Junglefowl (c) (i) Parental genotypes: IICC x iiCC IIcc x iiCC; or IiCC F₁ genotype: IiCc; 2 or (ii) 3 white : 1 pigmented 13 white : 3 pigmented; 1 or[8] 30. gene bank; source of alleles; for future (selective) breeding; to counteract, genetic erosion/loss of genetic variation; to counteract, inbreeding/homozygosity; to counteract extinction; for changed conditions; example of changed conditions; e.g. climate/environment/disease/fashion to preserve as yet unidentified, alleles/traits; max 4 [4] 31. pigmented birds more likely to be damaged; at all percentages; more damage as percentage of pigmented birds increases to 23%; more damage as percentage of white birds increases to 24%; fall in damage of white birds at, 25%/highest percentage; max 3 [3] 32. for benefit of humans; (i) to improve, trait(s)/named trait; to produce desirable, phenotype/genotype; to increase number of desirable alleles; to increase homozygosity; AVP; max 2 ref. self-pollination; (ii) ref. inbreeding; limited gene pool; max 2

	hybri steril game some failu ref. v	different numbers of chromosomes; d is 3n; e; etes have 22 and 11 chromosomes/hybrid has 33 chromosomes; e chromosomes unpaired; re of meiosis; ineven distribution of chromosomes; ther barrier to interspecific cross;	max 2	[6]
33.	sterile cond nutrient me produces <u>ca</u> subdivided different (n detail of eit grows to <u>pl</u>	dium to encourage, division/mitosis; <u>ullus;</u> utrient) medium to encourage differentiation; her medium; e.g. <i>named nutrient or plant growth substance</i>	max 5	[5]
34.	stated adva detail; e.g. stated disac detail; e.g.	particular character (not whole phenotype)/can alter one trait only (without affecting background genes)/can add allele from different taxon with which breeding may not be possible/quicker (than the many generations of, selective breeding/backcrossing)	2	[4]

35. (i) **X**;

X ;	
 ✓ (tick); 	
X ;	

(ii) 1 discontinuous; [do not allow if no reason given] reason one, gene/locus; A major/Mendelian, gene discrete phenotypes/ora; qualitative/large effect/little environmental effect; max 1 [6] 36. endonuclease; (i) cuts DNA; with sticky or blunt ends; at, palindromic/AW/specific/4 to 6 base pair/restriction, site; from bacteria; for cutting 'phage DNA; max 3 (ii) 2 sources DNA; ref. sticky ends; complementary binding; H-bonds between bases; A to T and C to G; nicks in sugar-phosphate backbone sealed/AW; by ligase; max 4 [7] 37. two recessive alleles/homozygous recessive/two of allele 2; (a) (i) no, normal dominant/allele 1; 2 homozygous same allele as affected child; (ii) deletion removes base pairs; shorter/lighter, pieces of DNA move further in electrophoresis; towards anode; so allele 2, shorter/lighter, than allele 1; max 3 0.25/25%/1 in 4; 1 (b) [6]

38.	ref to, leaching/runoff, into waterways; causing algal blooms; blocking of light for aquatic plants; ref to, decomposition/high numbers of decomposers; leading to high BOD; reference to 'blue-baby' syndrome; links to haemoglobin;	max 4	[4]
39.	 ref to setting grid/area to be sampled; suitable systematic method chosen/ref to belt/line transect; ref to repetition of line transects; use of <u>quadrats;</u> use of appropriate sized quadrat; details of <u>regular</u> quadrat placing; identify species/use of keys; presence or absence in quadrat; calculation of % of species frequency; measure % cover/use of appropriate scale; e.g. (Braun-blanquet/ACFOR/DAFOR/DOMIN) ref to analysis of data/use of kite diagram; AVP; ref to relevant statistical analysis, e.g. Spearmans Rank Correlation QWC - clear well-organised answer using specialist terms 	max 7 1	[8]
40.	routeways/pathways allowing movement of (insects); ref to connectivity/AW; ref to sites of refuge/habitat;	max 2	[2]
41.	pest remains/not totally eradicated; slow to work/AW; labour intensive/AW; reintroduction often needed; predator may eat crop; risk of migration; risk to other organisms/mutation/predation of other species;	max 2	[2]

42. pollination; maintain biodiversity; benefits to food chain/food for other organisms; max 2 [2] 43. increased profit for farmers/shops; no residues on food; no pesticides; less use of inorganic fertilizers; less risk of pollution; benefits to soils structure and quality; benefits to biodiversity; benefits to human health; max 3 [3] 44. (i) scapula Α B humerus С ulna D radius; 2 or 3 correct = 1 mark, 4 correct = 2 marks 2 (ii) ligament holds bones together/prevents dislocation; high tensile strength; flexible; cartilage ends of bones; low friction/smooth/slippery; 4 max ref. shock absorber/stops bones rubbing together; (iii) biceps/brachialis; (contraction) pulls on radius; flexor (muscle)/bends arm/pulls lower arm up; 2 max triceps; (contraction) pulls on end of ulna; extensor (muscle)/straightens arm/pulls lower arm down; 2 max3 max

[9]

45.	bind trop trop myo	eium ions/Ca ²⁺) released from sarcoplasmic reticulum; to troponin; onin changes shape; onin/tropomyosin, moves; sin binding site exposed; sin head binds (to actin);	3 max	[3]
46.	2 3 4	(<i>Alzheimer's</i>) reduced uptake of isotope/less positrons emitted/less glucose in brain cells; reduced blood flow; reduced brain activity; reduced respiration in cells; AVP; e.g. parts of brain <i>accept reverse argument for all points</i>	3 max	[3]
47.	(i) (ii) (iii)	control explained/AW; R <i>control without explanationf</i> mean number of errors reduced in subsequent trials; in all trials rats with phenserine had fewer errors/ora; ref. paired data for 2 trials; ref. trial and error; ref. associative learning; ref. operant conditioning; escape is reward/reinforcer;	1 2 max 3 max	
	(iv)	<pre>inhibits acetylcholinesterase; effect on enzyme; in synapses; slows down fall in ACh concentration/keeps some ACh at synapses/slo breakdown of ACh; in parts of brain associated with memory; improved <u>short term</u> memory;</pre>		[8]
48.	inhe does AVI	te/instinctive/stereotypic; rited/genetic/inborn; not require, learning/conscious thought; P; e.g. reflex 3 r ches for breast/bottle/AW;	<i>max</i> 4 max	[4]

49.	(a)	plants/protoctists; animals/fungi/protoctists;	
		A protoctists once only R taxa that are not kingdoms	2
	(b)	energy movement/locomotion/muscle contraction/cilia/flagella; active transport; A example anabolic reactions/AW; A e.g. protein synthesis/DNA replication (movement of chromosomes in) mitosis/meiosis; nerve impulse/electrochemical gradients; maintain body temperature/generate heat; AVP; (eg bioluminescence/electrical discharge) AVP; (detail of any point) 3 max	
		<i>carbon</i> in, biochemicals/macromolecules; A <i>in organic matter</i> e.g. carbohydrate/protein/lipid/nucleotide/nucleic acid; A <i>named examples</i> growth; repair; AVP; e.g. detail of any point) 3 max max	4
	(c)	(nitrifying bacteria) help/increase, plant growth; bacteria make nitrate (available); plants need nitrate; for, amino acids/protein/chlorophyll/DNA; for, new cells/mitosis/new leaves; max	2
	(d)	(i) chemoheterotrophic;	1
		(ii) photoautotrophic;	1
	(e)	 (i) carbon; R CO₂ (ii) Desulfovibrio, uses sulphur (S)/makes hydrogen sulphide (H₂S); green sulphur bacteria, use H₂S/make S; 	1
		colourless sulphur bacteria use H_2S ; max	2
	(f)	colourless sulphur bacteria;	1
	(g)	 <i>C. perfringens</i> similar to <i>C. difficile</i>/AW; (bacteria) anaerobic; (tissue damage/poor blood supply) decreases oxygen available; conditions suitable for <i>Clostridium</i> to multiply; AVP; max 1 	2

50.	(a)	(i)	U A C C G G A U U C A C;; 1 error = 1, 2 errors = 0	
			allow 1 mark for giving T throughout instead of U	
			(i.e. TA C C G G A T T C A C = 1 mark)	2
		(ii)	transcription / transcribed; R transcriptase	1
	(b)	(i)	 J anticodon; R anticodons K transfer RNA / tRNA; L ribosome / rRNA; M codon; R codons 	4
		(ii)	1 DNA triplet / codon / M / mRNA triplet, codes for specific amino acid;	
			2 order of, triplets / bases, determines the order of amino acids;	
			3 tRNA / K, has, corresponding / complementary, triplet / anticodon;	
			4 (tRNA / K) attached to specific amino acid;	
			5 activation of amino acid;	
			6 2 (tRNA) binding sites on the ribosome;	
			7 codon and anticodon bind; A match	
			8 A to U and C to G;	
			9 adjacent amino acids join;	
			10 peptide bond;	4 max
	(c)	1	attaches to ribosome;	
		2	removes, base / portion, of ribosome; A stops ribosome assembling / changes shape of ribosome	
		3	prevents ribosome, attaching to / reading, mRNA;	
		4	prevents codons being exposed;	
		5	prevents, tRNA / anticodon, attaching to, mRNA / codon;	
		6	prevents / inhibits enzyme responsible for, formation of peptide linkages;	
		7	AVP; e.g. further detail of any of the above points	2 max

51. max 7 for the process of genetic engineering max 2 for the advantages

- 1 identify / find, gene (for insulin) / length of DNA coding for insulin;
- 2 obtain / isolate / extract, gene / length of DNA (for insulin); obtain / isolate / extract, mRNA (for insulin);
- **3** restriction enzyme / named e.g.; reverse transcriptase;
- 4 cut <u>plasmid</u>; cut <u>plasmid</u>;
- **5** use same restriction enzyme; use restriction enzyme / named e.g.;
- 6 ref to, complementary ends / sticky ends / described;
- 7 insert, gene / AW, into plasmid;
- 8 <u>recombinant DNA;</u>
- 9 plasmid uptake by bacteria;
- 10 identify those bacteria that have taken up the plasmid;
- 11 provide with, raw materials / nutrients;
- 12 fermenter / bioreactor;
- 13 bacteria produce insulin;
- 14 extract <u>and purify</u> / downstream processing;
- **15** AVP; **e.g.**. detail of uptake by bacteria method of identifying those that took up plasmid PCR ligase 7 max
- **16** advantage 1; e.g. more reliable supply

17	advantage 2;	greater / faster, production overcomes ethical problem described	
		less risk of disease less risk of, rejection / side effects human insulin so more effective	8 max

QWC - clear, well organised using specialist terms;

award QWC mark if four of the following are used

gene	plasmid
restriction enzyme	complementary
named e.g. of a restriction enzyme	sticky end
reverse transcriptase	recombinant DNA
fermenter / bioreactor	

[9]

52.	(i)	asex	cual; A binary fission / cloning ignore mitosis	1	
	(ii)	1	restore diploid number when gametes fuse / AW;		
		2 prevents doubling of chromosome number (in each successive generation);			
		3	without use of gametes there is less variation;		
	4 no input of genetic material from more than one individual;		no input of genetic material from more than one individual;		
		 5 triploid / 5n / etc, would be infertile; 6 AVP; e.g. polyploid would result in loss of variation 			
				2 max	[3]

53.	(a)	(i)	denitrification;	1
		(ii)	Rhizobium;	1
		(iii)	active transport / diffusion;	1
		(iv)	nitrification;	1

(b) *max 3 for each method*

ploughing-in

- 1 legumes / named e.g., possess, (root) nodules / nitrogen fixing bacteria;
- 2 *Rhizobium*, performs nitrogen fixation / described;
- 3 nitrogenous compounds are present in, roots / nodules / legumes / plants;
- 4 made available to soil if, ploughed in / not removed;
- **5** roots / AW, decomposed / acted on by decomposers / rot / decay;
- 6 nitrogenous compounds released (by decomposers);
- 7 formation of nitrate; *3 max*

crop rotation

8	different, crops / plants, have different (nutrient / nitrate)
	requirements;

- 9 each year, different demands made on the soil / nutrients not being removed at the same rate;
- 10 in, 4th / fallow, year, no (little) nutrients removed / used for grazing animals;
- 11 nutrient levels allowed to build up;
- 12 use legume in rotation;
- 13 tuber / root, crop to improve soil structure; 3 max

[8]

4 max

54. (i) *R* if refer to body muscles

55.

si le m c d	ess, oxygen / nutrients / sugars / fatty acids, supplied (to heart muscle); lower removal of carbon dioxide; ess, respiration / ATP made; nuscle contraction is weaker / cannot pump as forcefully / ontraction stops; eath of heart muscle;	2	
n	nakes (remaining) heart muscle work harder / hypertrophy;	max 3	
re b	ngina / chest pain when, exercising / exertion; educed ability to perform exercise; reathlessness; nyocardial infarction / heart attack / cardiac arrest;	max 2	[5]
idea of	soil development; A ref to depth or fertility of soil		
	e), organic material / humus;		
(increas	be) in availability of water;		
	s available; A nutrients		
` I	vioneer species) carry out nitrogen fixation;		
• •	nthesis (fixing carbon);		
	abitats / provide shelter;		
AVP; e.	.g. increase weathering, stabilise sand / soil	2 max	

[2]

56.	(i)	final stage in succession / AW; (community) in equilibrium with environment;	1 max	
	(ii)	eat / trample, seedlings (of shrubs / trees) / AW; R eat grass prevents, succession / establishment of next sere;	1 max	[2]
57.	(a)	award two marks if correct answer (18.4) is given incorrect answer (or no answer) but correct working $= 1$ mark		
		44 / 239 (× 100) 18.4%;;		
		ecf applied for minor addition errors +/- 2	2	
	(b)	 lay, tape / string, <u>across</u> path; R along the path include trampled and non trampled areas in same transect; use of quadrat; ref to how quadrat is placed; R random count number of plants / percentage cover of plants; plot a graph; repeat the transect; carry out statistical test (Mann-Whitney / Spearman's rank); AVP; e.g. detail of sampling technique 	5 max	[7]
58.		$chilla - C^{Ch}C^{Ch} C^{Ch}C^{H} C^{Ch}C^{a};$		
	agoi	$tti - C^A C^A C^A C^{Ch} C^A C^H C^A C^a;$	2	[2]

[5]

[3]

3 max

59.	max 3 from points 1 to 5
-----	--------------------------

- 1 limited, food supply / space;
- 2 competition;
- 3 predation;
- 4 disease;
- 5 reached carrying capacity / death rate = birth rate;

marking points 1-5 linked to keeping population stable

- 6 individuals show variation;
- 7 variation due to, combination of alleles / mutations;
- 8 best adapted survive / ora; A survival of fittest idea
- 9 reproduce;
- 10 pass alleles to offspring;
- 11frequency of favourable alleles will, increase / be maintained; A ora5 max
- 60. light / daylength; gravity; water / humidity; touch; chemicals; **R** carbon dioxide temperature; **A** heat

61.		tissue	
	1	meristematic;	
	2	undifferentiated / totipotent / able to develop into any cell type / unspecialised;	
	3	(cells) can still divide / undergo mitosis;	
	4	virus free;	max 2
		sterilising agent	
	5	aseptic technique;	
	6	prevent, growth of / contamination by, bacteria / fungi;	
	7	could overwhelm / grow faster than / compete with, plant tissue;	
		AAW	max 2

[7]

8 9 10	cytokinins	<i>auxins</i> th, regulator / promoter / hormone ; stimulate, shoot / stem, growth / many branches; nulate growth of, root / root hairs; max 2	
11 12 13 14	magnesium nitrate (ion sucrose con	<i>a, nitrate ions, sucrose</i> a for, chlorophyll / photosynthesis; s) needed for, protein / enzyme / chlorophyll / named chemical; nverted to, glucose / fructose / monosaccharide; spiration / release energy; max 3	
15	AVP; e.g.	further detail e.g. cytokinins stimulate cell division no vascular tissue therefore disease free	6 max
	QWC – cl	ear well organised using specialist terms;	1
	<i>context</i> meristemat undifferent totipotent mitosis aseptic contaminat regulator promoter hormone chlorophyl photosynth respiration	iated ion 1 esis	
(a)	(two or m do not as	nore) genes / loci, on same chromosome; R alleles sort independently (in meiosis) / inherited together;	
	between	over l exchange of portions of, chromatids / DNA; A swapping alleles (paternal and maternal) homologous chromosomes; A bivalent use I (of meiosis); max 2	max 3
(b	male ster pollen tra plants iso		
	flowers b	agged (before and after pollination);	max 3

62.

R 'chance' alone (c) (i)

=

chance fertilisation; chance re picking 50 offspring; chance re other traits affecting survival; AVP; e.g. position effect, different gene interactions affecting expression, effect of crossing over on numbers of other classes max 1

award two marks if correct answer (16%) is given without working (ii)

recognition of recombinant classes;

$$\frac{32}{200} \times 100;$$

=16%; max 2

(iii) 1,2 $\frac{A}{a} \frac{B}{b} \times \frac{a}{a} \frac{b}{b} = ;; A (AB)(ab) \times (ab)(ab)$

- 3 both chromatids per chromosome shown;
- 4 crossover shown:
- 5 result of crossover shown;
- 6 most / 84%, gametes <u>A</u> B and <u>a</u> b [\times <u>a</u> b]; **A** AB and ab 7 = parental;
- 8 few / 16%, gametes <u>A</u> b and <u>a</u> B [\times <u>a</u> b]; **A** Ab and aB 9 = recombinant;
- 10 ref 16 map units apart / close together; max 6
- 63. production of desired changes in phenotype of an organism; (i) selection of appropriate alleles / AW; by artificial selection; use as parents / mate, those showing desired phenotype (to larger degree); max 2 (ii) measure of value of individual's genotype (for breeding); mate with number of proven individuals; assess phenotypes of offspring; R genotypes average value; especially useful for sex-limited traits; R sex-linked e.g. sex-limited trait; max 4

[6]

[15]

64. *description*

- D1 chosen male and female mated;
- D2 ref to desired characteristic / named desired characteristic;
- D3 ref to AI;
- D4 advantage of using AI;
- D5 offspring inspected and best mated;
- D6 several / many, generations;
- D7 ref to problem inbreeding;
- D8 ref to way of minimising inbreeding;
- D9 ref to heritability;
- D10 easier to select for traits with high heritability / ora;
- D11 easier to select for discontinuous variation / ora continuous variation;
- D12 ref to polygenes / additive effect; max 6 'describe' D marks

explanation

- E13 selective breeding involves whole genomes;
- E14 hence other traits follow selected trait(s);
- E15 ref to linkage;
- E16 artificial selection;
- E17 selection, different from natural selection / for benefit of humans;
- E18
 starter population, small / not representative;

 A founder principle
 max 4 'explain' E marks

 AVP either D or E mark;
 e.g. ref to use of, IVF / surrogate, with reason

 ref to loss of alleles / genetic erosion
 max 8

QWC - legible text with accurate spelling, punctuation and grammar;

[9]

65.	(a)	(i)	cow superovulated; treated with, hormone / FSH / named proprietary brand; washed out of oviduct (A uterus) / collected from ovary; detail washing; detail collection;	max 3
		(ii)	ref to mitochondrial DNA; detail; e.g. circular / self-replicating mitochondria in cytoplasts fused with darted buffalo cell; A organelle embryo has mixture of buffalo and cow mitochondria; nuclear / chromosomal, DNA is buffalo; ref to bacterial contamination;	max 2
		(iii)	for correct phase of cycle; ref to synchronisation; to prepare uterus for (implantation of) embryo; ref to increased thickness of uterine lining; ref to increased vascularisation of uterine lining;	max 3

	(b)	increases rate of reproduction; does not require species' eggs; so does not require fertile female; does not require female for pregnancy / uses surrogate; female not put at risk in, travel / mating / pregnancy; successfully formed embryo can be, subdivided / cloned; can use adult cells from all existing animals to maintain diversity;	max 4	
	(c)	<pre>sperm bank; oocytes / eggs; "gametes" = 1 mark only embryos; tissue; zoo / reserve / game park;</pre>	max 3	[15]
66.	(i)	4 - 6 base pairs; palindromic / AW; specific sequence;	max 2	
	(ii)	yes, same sticky ends / sticky ends shown; GATC / CTAG complementary (bases); hydrogen bond; A with T; C with G;	max 3	
	(iii)	two correct cuts; G <u>ATT</u> CAGAATTTCG <u>AAT</u> C CTAA GTCTTAAAGCTTA G	1	[6]
67.	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	restriction enzyme to cut gene from genome; and, plasmid / artificial chromosome / DNA of vector; same restriction enzyme; if cut with sticky ends then join; if cut with blunt ends then, sticky ends / nucleotides, added; R bases with C bases one end and G bases other; requires terminal transferase; (DNA) ligase needed to seal nicks in DNA backbone; ref to join phosphate - sugar / adds phosphate; DNA may be produced by reverse transcriptase; from mRNA; single strand made double stranded by DNA polymerase; wanted DNA replicated by polymerase chain reaction (PCR); using, DNA polymerase with high optimum temperature / <i>Taq</i> polymerase; AVP;	max 8	

1

[9]

QWC - clear, well-organised answer using specialist terms;

award QWC mark if three of the following are used

endonuclease terminal transferase reverse transcriptase (DNA) ligase DNA polymerase PCR correct use of nucleotide and base sticky ends blunt ends

68. (a) (i) 1 mutation; 2 random / spontaneous / chance / pre-existing; 3 natural selection; 4 drug / insecticide, is, selective agent / selective pressure; 5 resistants have selective advantage; 6 resistants survive / susceptibles die; 7 pass, allele / mutation, to offspring; R gene / resistance 8 allele frequency increases; 9 rapid because, multiplicative phase / short generation time / large 10 numbers offspring / many breeding sites; max 5 (ii) *Plasmodium* inside, liver cell / red blood cell; antibodies cannot reach target / cannot be detected by immune system; large genome; antigenic variation / AW; variation from meiosis; detail; e.g. independent assortment / crossing over parasite switches between different versions of proteins; ref var gene; max 3 (b) (i) marks in pairs - one pair only mutation; with lack of production; examples in, promoter / 'on' switch; so not transcribed; to give premature stop codon; so, no useful / shortened, product; deletion; with loss of allele / different product; frameshift; so, different / no useful, mRNA / product; in initiation codon; so mRNA not translated;

AVP mutation; AVP lack of production;

max 2

no, membrane receptor / AW; so no, binding / internalisation; no, channel / carrier / pump; so lack of essential, nutrient / ion; do not multiply in liver; so not available to infect red blood cells; AVP protein; problem; max 2 100% protection with 2 boosters; (c) irrespective of dosage; 70% with 1 booster; no evidence with 50 000 whether works with one booster; ref to memory cells; needs large numbers of parasite / ref 10 000 x 3; safe / will not cause disease / does not kill mice; might mutate back to wild type; can infect liver cells even if no further development; may need drug to remove from liver; data relates only to mice / may not be applicable to humans; AVP; e.g. no data comparing results with standard antigenic (AW) vaccine max 3 [15] insulin is, polypeptide / protein; 69. (promoter), switches on transcription or makes gene produce, mRNA / insulin: as blood glucose rises insulin production increases; ref to figures with units; only produced when needed; ref to, homeostasis / negative feedback; max 3 [3] 70. benefits avoids injections / pain of injections / children's fear of injections; mimics normal pancreatic behaviour; more stable homeostasis / reduced highs and lows in blood sugar; less chance, hypoglycaemia / hyperglycaemia; less restriction on lifestyle;

no need to measure blood sugar; AVP;

AVP;

(ii)

marks in pairs - one pair only

problemsrejection;cells could lodge elsewhere;may take longer to act;AVP; e.g. rat data may not be applicable to humans,transgene may have unforeseen effectmax 3max 4

max 3

71.	allop ref to ref to loss diver ref to	tically isolated populations; atric speciation / AW; o genetic drift; o, founder effect / founder population; of alleles / genetic erosion / reduced gene pool / loss of genetic rsity / AW; o, disease / population crash; ; e.g. ref to exposure to different selection pressures	max 4	[4]
72.	asper ref to slope ref to time AVP	ype; pH; cover; et / locality; o temperature linked to aspect;	max 3	[3]
73.	(i)	A cartilage;		
		B <u>synovial</u> fluid;	2	
	(ii)	reduces friction / stops bones rubbing together; R no friction shock absorber / cushions bone; keeps (joint) lubricated / AW; (fluid) provides nutrients to, chondrocytes / cartilage; A cells	3 max	[5]

74.	1 2 3 4 5 6 7	cone cells absorbs light; iodopsin changes form / AW; ref to three different types of cone; hyperpolarisation / -40mV to -70mV; stops releasing transmitter; bipolar / ganglion, cells; action potentials / impulses, along optic nerve;	nax 4	
	8 9 10 11 12 13	to, visual sensory area / sensory cortex; then visual association area; ref to occipital lobe; then temporal lobe; where word is identified from memory / AW; AVP; e.g. glutamate, optic chiasma, inhibitory action of transmitter	6 max	
		QWC – legible text with accurate spelling, punctuation and gram	nar ; 1	[7]
75.	arb co- con moi	<i>mpanzees</i> oreal / AW; ordination of movement more complex / chimps perform more uplicated tasks / AW; ora re neurones required / AW; ora P; e.g. hand-eye co-ordination	2 max	[2]
76.	(i) (ii)	red light; arm withdrawn (without a shock);	1 1	[2]
77.	1 2 3 4 5 6 7	rat, investigates cage / tries to escape; presses lever by chance; food / reward, appears; ref to (positive) reinforcement; ref to repetition; associative learning; AVP; e.g. trial and error	3 max	[3]

78.	(i)	S T	dorsal root ganglion; relay / intermediate / bipolar / internuncial, neurone;	2	
	(ii)	1 2 3 4 5 6	rapid / fast acting; short lived; automatic / involuntary / no conscious thought / brain not involved; not learned / innate / genetic / inborn / instinctive; response the same each time / stereotypical; AVP; e.g. safety / survival	3 max	
	(iii)	1 2 3 4 5 6 7	distortion / AW; Na ⁺ , gates / channels, open; A sodium / Na Na ⁺ / sodium ions, enter; R sodium / Na depolarisation / -65mV to +40mV; receptor / generator, potential; ref to threshold; action potential; <i>allow only if linked to idea of threshold reached</i>	3 max	
	 (iv) neurotransmitter only, in presynaptic knob / released from presynaptic membrane; receptors only on postsynaptic membrane; ref to refractory period / hyperpolarisation; 			2 max	[10]
79.	1 2 3 4 5 6 7 8 9	incre block ref to (so) a deco ref to fish / AVP disea	pphication; ased growth of, algae / seaweeds; (, light / space; o competition; alters food chain / example; mposition of, sewage / dead organisms; o aerobic bacteria / increased BOD / less oxygen in water; / sea slugs / sponges / corals, die; (linked to oxygen loss) c; e.g. increased mineral nutrients increases susceptibility of corals to use, mased numbers of anaerobic species, ref to heavy metal toxicity	4 max	[4]
					[+]

80.	huma	ans are eukaryotes / Escherichia coli is a prokaryote;		
	large intro 'junk repea centr	<i>uns / eukaryotes have (accept ora)</i> r, proteins / genes; ns; c' DNA / non-coding DNA; ating sequences; omeres / telomeres; l genes;		
		<i>li</i> cell much smaller; <i>ora</i> tion for, less waste of space / more compact genome;	2 max	[2]
81.	(i)	semi-conservative replication; DNA, polymerase / helicase; breaks hydrogen bonds between two DNA strands / unzips DNA; each DNA strand acts as a template / both strands copied; complementary base-pairing (with free DNA nucleotides); sugar-phosphate backbone forms;	2 max	
	(ii)	crossing-over; in prophase; recombination of, non-sister / maternal and paternal, DNA; AVP; e.g. matching cuts in DNA DNA ligase	2 max	
	(iii)	synapsis / to hold, (homologous) chromosomes / bivalent, together; (so close enough) for crossing-over; so can be evenly segregated; AVP; e.g. to package or support chromosomes, avoid DNA breaking, easier to move DNA	2 max	[6]
82.	(a)	 mRNA leaves nucleus; <i>ora</i> mRNA, translated / used to make, protein; DNA, transcribed / used to make, mRNA; mRNA short-term / DNA (long-term) store; 	2 max	
		 siRNA smaller / fewer nucleotides / only matches part of gene; <i>ora</i> siRNA double-stranded; <i>ora</i> 	2	
	(b)	(complementary) base-pairing; hydrogen bonding; between purines and pyrimidines; A with U; R A with T C with G; ref to 2 or 3 bonds (correct context);	3 max	[7]
-----	-------------	---	--------	----------
83.	(i)	(<i>CCR5 / macrophages</i>) (siRNAs continue to work) in long-lived cells; only one treatment needed for macrophages / CCR5; (siRNAs diluted) as lymphocytes divide; <i>ora</i> repeat treatments needed for, lymphocytes / CD4;	2	
	(ii)	<i>(CCR5)</i> because no essential function in body / absence not a problem;	1	[3]
84.	(a)	 do not credit if any incorrect answer included (i) fox; (ii) grass / clover / legume; 	1 1	
	(b)	 (i) nitrogen fixation / Haber (process); A reduction (ii) lightning; A oxidation / combines with oxygen A 'lightening' 	1	
		 R thunderstorm / lighting (iii) denitrifying; A correct e.g. (Pseudomonas) R Nitrobacter / Nitrosomonas / Rhizobium 	1	
		 (iv) fixes nitrogen / provides fixed nitrogen or NH4⁽⁺⁾; R ammonia ref to, clover / legume / named legume, making, amino acids / polypeptides / protein; (plant has) no need to rely on (fixed) nitrogen compounds in soil; R ref to fertilisers free-living species provide, ammonium (ions) / fixed nitrogen, 		
		for nitrifying bacteria / nitrification;	2 max	[7]
85.	(i) (ii)	<pre>restriction (enzyme) / endonuclease; A named e.g. (DNA) ligase;</pre>	1 1	-
				[2]

86. 23 ; 6-7 ;

87.	(i)	A, B and E;	1	
	(ii)	<i>apply ora throughout</i> produced by, sexual reproduction / fusion of gametes / fertilisation ; ref to random mating ; <i>random fertilisation = 2 marks</i> contain chromosomes from two individuals / diploid organisms ; more <u>alleles</u> ;	2 max	
	(iii)	C and D are haploid organisms ; haploid cells have, one set of chromosomes / half the number of chromosomes ; meiosis requires pairing of homologous chromosomes ; ref to maintaining chromosome number when gametes fuse / gametes must be haploid ;	2 max	
				[5]
88.	takin 1 2 3 4 5 6 7 8 9 10 11 12	ing points 1,6 and 9 must be linked to correct statements as to what is g place in these stages to gain the mark. prophase 1 ; synapsis / homologous chromosomes pair up / bivalents form ; crossing over ; chiasma(ta) occur ; DNA / alleles, exchanged ; A linked genes separated ; metaphase 1 ; independent / random, assortment ; bivalents line up on equator, independent of each other / randomly ; metaphase 2 ; independent assortment of chromatids ; chromosome mutation ; named example ; e.g. non-disjunction		
	13	AVP ; e.g. ref to non-sister / non-identical, chromatids.	7 max	
		QWC – clear well organised using specialist terms ; award the QWC mark if four of the following are used in correct context		
		prophase, metaphase, homologous, bivalent, chiasma, crossing over, independent assortment	1	[8]

[2]

- 7 saltatory conduction / AW;
- 8 ref to nodes of Ranvier ;

89.

90.

91.

1

2 3

4 5

6

- 9 synapse with, motor / effector / efferent, neurone ;
- ref to, calcium ions / calcium channels ; 10
- 11 vesicles of neurotransmitter fuse with presynaptic membrane;
- 12 named neurotransmitter;
- 13 secretion / exocytosis (from presynaptic membrane); **R** release
- 14 diffusion across synaptic cleft;
- receptors on postsynaptic membrane ; 15
- 16 depolarisation / AW, (of postsynaptic membrane / motor neurone);
- 17 ref to, neuromuscular junction / motor end plate ;
- 18 AVP; e.g. ion movement,

	refractory period	
	voltage-gated channels	8 max
a		1

QWC – legible text with accurate spelling, punctuation and grammar; 1

[9]

PMT

[17]

92.	(a)	(i) (ii)	<pre>produced by asexual reproduction ; one parent / no gamete formation ; genetically identical (to parent) ; produced by mitosis ; keeps, desirable characteristics / high productivity / AW ; quicker / no germination time ; stronger / more likely to survive ; mass production / more produced ; disease free ;</pre>	2 max 2 max
		(iii)	induce seedless fruit ; increase fruit size ; improve fruit set ; avoid need for pollination ; AVP ; e.g. weedkiller / inhibits sprouting in potatoes / prevents premature fruit drop	2 max
		(iv)	<pre>large surface area ; absorbs water ; by osmosis / down a water potential gradient ; ions / named ion(s) ; ions pass through cell surface membrane ; protein, channels / carriers ; active transport ; help to prepare cuttings for transplanting to soil / AW ; AVP ;</pre>	4 max
	(b)	vitam ions / auxin	o acids ; ins ; named ions ; s ; inins ; ;	3 max
	(c)	sterile specia traine electr qualit	r intensive ; e conditions ; al equipment ; ed staff ; icity / power, costs ; ty control of process ; ; e.g. set up costs	3 max
	(d)	grafti	ng / budding / described ; ing / described ;	1 max

93.	(a)	(i)	epistasis ; dominant ; correct ref to epistatic and hypostatic gene ; ref to protein / enzyme / inhibitor, product of allele A ; prevents, transcription / translation ; inhibits, expression / gene action ; blocks enzyme activity ;	3 max
		(ii)	<pre>small number of phenotypes ; distinct (phenotypic) classes ; qualitative ; two genes / AW ; large effect ; different genes have different effects ; not environmental ; AVP ;</pre>	3 max
	(b)	(i)	emasculate /remove stamens from / male sterility gene in, seed parent bag flowers, before / after, pollination ; grow in isolation ; transfer pollen by hand ;	; 2 max
		(ii)	increase genetic contribution of that species / <i>ora</i> ; keep (alleles of) background genes of that species ; so that only A/a exchanged / AW ; to see effect of A/a in other species ;	2 max
		(iii)	to produce, homozygous recessive / aa / AW; so that, wanted allele / desired trait, expressed;	1 max
	(c)	bees swap selec but d selec and d ref cc colou colou	hators can distinguish colour ; attracted to pink ; [A refs to 'blue' or UV <u>re</u> pink] ping alleles reduces visits by normal pollinator ; ping alleles attracts wrong pollinator ; tively bred / aa / red <i>M lewisii</i> , decreases bumblebee visits; oes not attract many hummingbirds ; tively bred / Aa / pink <i>M. cardinalis</i> , attracts bumblebees; lecreases hummingbird visits only slightly ; omparative figures ; ir important to bees ; ir not important to hummingbirds / some other feature important to hummingbirds ;	
		AVP	•	4 max

[15]

94. more transcription by QQ genotype ;

at both ages;

in both skeletal and cardiac muscle;

A 'throughout' / 'in all cases' for 1 mark of these 2 much more in skeletal muscle / slightly more in cardiac muscle ; in QQ genotypes expression falls with age in both skeletal and cardiac muscle ; in qq genotypes expression rises with age in skeletal but falls in cardiac muscle ; use of comparative figures ;

[4]

4 max

95. (a) **1** gene bank ;

- 2 ref to wild type ;
- 3 maintain genetic diversity;
- 4 ref to, loss of alleles / genetic erosion ;
- 5 may have appropriate trait for breeding ;
- 6 for future use ;
- 7 requirements of breeders change ;
- 8 in case, climate change / different conditions ;
- 9 ref to, temperature / global warming ;
- **10** ref to, pH tolerance / acid rain ;
- 11 as yet unknown traits may be useful ;
- 12 in case other named change ;
- 13 may lose trait if interbred ;
- 14 may form part of, food web / community;
- 15 that cannot be replaced ;
- 16 adapted for, habitat / niche ;
- 17 hybrids less well adapted ;
- **18** ref to extinction ;
- 19 AVP ; e.g. need to maintain population for leisure fishing
- **20** AVP ;

QWC – legible text with accurate spelling, punctuation and grammar;

1

8 max

(b) (i) enzyme from bacterium; break down DNA of invading (bacterio)phages; ref to specific site of DNA; detail of site (4 - 6 bp / palindromic); cut DNA; leaving blunt ends; or sticky ends;

(ii) crucian carp 1 (thick) band in correct position (see diagram);
 hybrid goldfish x common carp 2 (thin) bands in correct position;
 hybrid common carp x crucian carp 2 (thin) bands in correct position;

96. mRNA and its complementary RNA bind together; (a) hydrogen bonding; A to U and C to G; \mathbf{R} 'T' double stranded RNA / duplex RNA ; cannot bind to ribosome; tRNA cannot bind ; cannot be translated / AW; ref to, RNA interference / RNAi ; 4 max (b) (i) theobromine content, reduced / approximately halved ; no significant difference between short and long lengths of RNA; caffeine content reduced ; to half by short lengths of RNA; A figures to about a third by long lengths of RNA ; A figures 3 max (re caffeine) greater chance of pairing longer length with mRNA; (ii) 1 AVP; explant of meristematic / cambium / totipotent / pluripotent, cells (iii)

/ tissue ;
explant (surface) sterilised / sterile nutrient ;
appropriate hormone to stimulate, mitosis / division ;
callus formed ;
subdivided ;
appropriate hormone to stimulate differentiation ;
plantlet formed ;
hardening medium / sterile soil 4 max

3 max

3

[15]

		 (iv) genetically identical; genotype does not affect result; easily genetically engineered; plants derived from it identically genetically engineered / AW; large numbers easily obtained; early stages compact; so easily kept in identical conditions; 	3 max
97.	(a)	penetration of biofilm difficult ; ref to diffusion of antibiotic ; detail of diffusion ; larger SA of separate bacteria / <i>ora</i> ; does not reach all bacteria in film / <i>ora</i> ; antibiotic trapped by film ; detail of entrapment ; dead bacteria in film form barrier ; AVP ; e.g. horizontal transmission / conjugation, easier in biofilm AVP ;	4 max
	(b)	both strains have identical sensitivity when in suspension ; to all three antibiotics ; both, less sensitive / more resistant, when in biofilms (<i>ora</i>) ; strain 1 much, less sensitive / more resistant ; comparative figures ; C most effective / AW ;	

B least effective / AW; 4 max

(c) mutation; random / chance / pre-existing; detail of mutation; e.g. base substitution, addition, deletion ref to, selection / selective advantage; codes for different, glucan / biofilm; affects all three antibiotics; blocks antibiotic from reaching cells; binds antibiotics;

(d) horizontal transmission ;
(copy of) plasmid ;
via conjugation ;
detail ; conjugation tube / 'R' plasmid / single strand DNA transferred
via transformation ;
transferred by (bacterio)phage ;

[15]

4 max

98. preservation of, organisms / environments ; that are at risk from human activity; requires management; creation of new habitats ; may need reclamation; conservation requires vigilance; resolving conflicts ; A suitable alternatives 2 max [2]

99.	(i)	<pre>(penicillin) secondary metabolite ; produced at start of / during stationary phase / end of growth phase ; A log phase ref to production (at maximum) when kept short of nutrients / nutrients depleting / factors limiting growth ; continuous culture maintains in, log / rapid growth, phase ;</pre>	2 max	
	(ii)	to provide respiratory substrate / energy; A for respiration to maintain culture / keep culture alive / prevent (premature) death of culture ; (limited) maintains in stationary phase / prevents rapid growth ; AVP ; R glucose as carbon source	2 max	
				[4]

100. (i)	<pre>type of starch ; concentration of, starch / suspension ; volume of, starch / suspension ; R amount ref to flow rate ; size of beads ; A number / mass / volume, of beads in column R amount temperature ; length / diameter, of column ; yeast concentration ; pH ; AVP ; e.g. age of culture</pre>	t 3 max
(ii)	add Benedict's (reagent) and, boil / heat ; \mathbf{A} CuSO ₄ in alkaline solution	5 max

add Benedict's (reagent) and, boil / heat ; A $CuSO_4$ in alkaline solution (11) different, densities / colours (of precipitates) formed ; A turbidities use of a colorimeter in correct context; A filtering and weighing precipitate

OR

use of Clinistix / Diastix (strips); different colours obtained ; colour compared to chart;

accept other valid methods e.g. reference to use of biosensors 2 max

	58	<i>1</i> T
\mathbf{r}	'/\.	// /
	10	11

	(iii)	<i>agree</i> not all yeast cells successfully entrapped / AW ; (in product) yeast cells, respiring / metabolising / using sugar as an <u>energy</u> source ; (so) lower levels of sugar (in product) ; <i>not agree</i> yeast cells, entrapped (in beads) / immobilised, so product not contaminated / yeast not present to affect product ; yeast cells unable to pass through, glass wool / filter ; only very low numbers of yeast cells (so unlikely to have great effect) ;	2 max	[7]
101.	(i) (ii)	habituation / associative ; no threat ; no waste of energy ; less stress ; AVP ;	1 2 max	[3]
102.		aster / rapid / AW ; ; e.g. survival	1 max	[1]
103.	(i) (ii)	corpus callosum ; cerebellum ;	1	
	()	medulla (oblongata) ; hypothalamus ; cerebrum / cerebral cortex ;	4	[5]

104.	acetylcholine – neurotransmitter / AW;
	acetylcholinesterase – breaks down ACh / enables repolarisation of post synaptic membrane ;

[2]

105.	(i)	stimulus causes, increase in tension / twitch ; fluctuation in tension / AW ; overall increase in tension ; AVP ; e.g. ref to figs (must have time units)		2 max	
	(ii)	state of constant, contraction / tension ; correct ref. to heart ; difficulty in ingestion / jaw muscles fixed ; rib / intercostal, muscles remain contracted ; difficulty in, lung ventilation / breathing ; AVP ; e.g. fever / headache	R paralysed alone	3 max	[5]
106.	1 2	ATP produced ; Na ⁺ or K ⁺ pump / maintains concentration gra	adient / repolarisation ;		
	3 4 5 6 7 8	<i>transmission of impulses</i> acetylcholine / neurotransmitter formation ; vesicle formation ; movement of vesicles ; exocytosis / vesicles fuse with membrane ; ref. active transport (of ACh / Ca ²⁺) ; AVP ; e.g. ref to microtubules / endocytosis	4 max		
	9 10 11 12 13 14 15 16	muscular contraction ATP attaches to myosin head / ATPase ; hydrolysis of ATP / ATP \rightarrow ADP + P ; myosin head tilts / shortening of sarcomere ; ATP / energy, required for detachment of myo from actin ; calcium pumps in <u>sarcoplasmic reticulum</u> ; synthesis of protein (for repair, growth) ; AVP ;	osin head ; 5 max	8 max	
		QWC – clear, well-organised using speciali	st terms ;	1	
		award the QWC mark if four of the following acetylcholine, actin, myosin, sarcoplasmic ret hydrolysis, repolarisation			
					[9]

107. (i) higher, number / proportion / percentage / ratio / fraction, of mounds have thyme ; (c.f. quadrats) ora A figs, e.g. ²/₃ vs ¹/₂, 2:1 vs 1:1, 36 vs 24 1 (ii) look for a statement and a reason use smaller quadrat ; e.g. $50 \text{ cm} \times 50 \text{ cm}$ for fair test : AW use grid and random numbers ; throwing keys biased ; AW estimate, percentage cover / abundance ; A point (frame) quadrat may be single plants in some samples and many in others; bigger study area / more data; (keep equal numbers mounds and quadrats) improves reliability / AW; record other plants ; could influence thyme ; measure / note, abiotic variables ; A example explanation of how named variable affects thyme ; AVP:

> AVP; 4 max [5]

108. (a) steep increase, for the first 1 - 2 hours / till 2.2 - 3.8 (a.u); A linear, (i) steady became constant at, 3 hours / 4.3 (a.u); if no figs in description, e.g. 'rose then constant' award 1 mark max 2 (increased as) enzyme working / rate of reaction high / reaction (ii) proceeding; (increased as) substrate converted into, drug / product ; (levelled off / became constant, after the) enzyme, became inactive / was denatured; (levelled off / became constant) because product inhibits, reaction / enzyme; **R** references to enzyme or substrate being used up **R** T °C limiting 2 (b) pH; degree of mixing; enzyme concentration; AVP ; e.g. ref to concentration of inhibitors 1 max

	(a)		may of 2 marks for predicting or containing		
	(c)	P1 P2 P3 P4	max of 2 marks for predicting or explaining concentration of drug higher / AW ; rate of reaction slower / AW ; may not level off (in time scale shown on graph) ; time taken to reach the maximum yield (approximately) doubles ; (c.f. 15 °C)		
		E1 E2 E3 E4 E5	not denatured ; adapted to 5 °C / optimum / body / usual, temperature ; ref to Q ₁₀ of about 2 ; ref to lower kinetic energy / AW ; ref to E-S, collisions / complexes ;		
			AVP ; e.g. ref to active site	3 max	
	(d)	(i)	(shaded amino acids) form the active site ; substrate may not attach to the active site ; enzyme-substrate complex may not be formed / AW ;	1 max	
		(ii)	44 and 66 not part of active site ; hold, active site / 3° structure / 3D structure, in shape ; A stop denatu hydrogen bonds weak ; easily broken by, vibration / heat ; A pH disulphide bridge strong ;	ıring	
			not broken by heat ;	2 max	
	(e)	chang make trans differ trans	eotide / base/ DNA, sequence codes for, protein / amino acid, sequence ges DNA ; A change triplet es different mRNA ; A change codon cription ; rent tRNAs line up ; A change anticodon lation ; rent (amino acid sequence in), enzyme / protein / polypeptide ;	e; 2 max	[13]
109.	(a)	(mon conta	wo of the following nomer) not glucose ; ains nitrogen ; ains, sulphur ; t; R ref to branching	2 max	
	(b)	(cells cells no tii	ant of glycoprotein varies (in different cells) ; s carry out) endocytosis to different extents ; have different life spans / example ; me for polysaccharide to accumulate in short lived cells ; per / role, of lysosomes not same in all cell types ; ;	1 max	

	(c)		Hunter's syndrome, lysosomes / vesicles, might be		
		have	er; e numerous; different shape; differently;		
			; e.g. granular cytoplasm	1 max	
	(d)	(i)	unaffected parents can have an affected child ; <i>ora</i> e.g. 3, 4, 8 / 11, 12, 16, 17 ;	1 max	
		(ii)	only males affected ; <i>ora</i> mothers pass it on ; <i>ora</i> on the X chromosome ;		
			carrier women asymptomatic / dominant normal allele masks trait ; $4 / 11 / 1$, could be carriers ;	2 max	
	(e)		are only 3 cases / too small a sample ; ly female line shown ;		
			; e.g. pedigree of, 3 / 12, not known progeny of, 13 / 14 / 15, not known	1 max	
	(f)	-	must act in all cells ; somes are within cells ;		
			for drug to reach ; 1g acts as enzyme, polysaccharide on cell membranes may be broken		
		down tissu AVP	e mechanical support would break down ;		
		AVP	; e.g. no animal model		
			protein drug digested in gut rare condition (qualified), economic argument	2 max	[10]
110					
110.	(a)		d attracting a mate of a different species ; <i>ora</i> re reproductive isolation ;	1 max	
	(b)	(i)	diffusion ;	1	
		(ii)	so that they do not receive oxygen constantly ; there are mitochondria between them and the cell surface ;	1 max	

	(c) (d)	only briet oxygen co preventin each flash AVP;	ndria / aerobic respiration / oxidative phosphorylation, inhibited fly ; oncentration decreases again ; ng, action of luciferase / production of light ; h short ; <i>ora</i> e.g. so not continuously lit	2 max	
	(u)	protein sy synthesis movemer phosphor AVP;;;	ynthesis ; of named substance ; nt of organelles ; ylation of glucose ; e.g. transcription, translation, anabolic reaction		
		R respira	tion, DNA replication, chromosome movement, mitosis	3 max	
	(e)	nitrous or mitochon oxygen, a	embranes, damaged / disrupted ; xide released ; adria stop using oxygen ; allows light production / reaches light-producing organelles ; ted quantities / continuously, so light is brighter ;		
			n / oxidative phosphorylation, ceases ; ATP / NADH ₂ ;		
			synthesis / regeneration, stops ;	3 max	
	(f)	live bacte	eria, respire / produce ATP ; ora	1	
	(g)	<u>mRNA</u> (0	coding for luciferase) ; A DNA	1	[13]
111.	(a)	· · · · ·	ace) where, organism / animal / plant / population / mmunity, lives; R <i>things / named organism</i>	1	
		A	<u>e</u> of organism in, the ecosystem / AW; habitat / environment / community / area / place population	1	
			ing / biotic, and, non-living / abiotic, components that interact;	1	
	(b)		on = one <u>species</u> munity = more than one / all, species / population;	1	[4]

112.	(i)	1	some food not, eaten / accessible; A an example		
		2	some, food / energy, not digested / egested / lost as faeces;		
		3	(some assimilated) food / energy, lost in excretion;		
		4	ref to decomposers;		
		5	(some assimilated) food / energy, lost in respiration;		
		6	energy lost, as heat / in movement / in metabolism;		
		7	small proportion energy used for, growth / material, and is available to next trophic level;	3 max	
	(ii)	1	plant material difficult to digest / animal material can be digested easily;		
		2	ref to, cellulose / lignin / wood;		
		3	no cellulase;		
		4	(animal) gives similar spectrum of amino acids (as consumer);		
		5	less of the producer available to the 1° consumer than 1° consumer available to the 2° consumer;		
		6	AVP; e.g. ref to gut bacteria		
		ignor	re references to numbers of organisms eaten or size of organisms	2 max	[5]
113.	(i)	Q, S,	P, N, M, R ;	1	
	(ii)	accep	pt correct names of stages		
		Q; M; Q/S S; R;	A prophase 1 A anaphase 2 ; A prophase 1 / metaphase 1 A metaphase 1 A telophase 2	5	
	(iii)	synth synth synth	a replication ; nesis of proteins / named protein ; A transcription / translation nesis of membrane ; nesis of, organelle(s) / named organelle ; ration ;		
			; e.g. centrioles <u>replicate</u> ;	2 max	[8]

Individual 2 - $X^{H}Y$; **114.** (i) Individual 5 - X^hY ; Individual 6 - $X^{H}Y$; Individual 9 - $X^{H}X^{h}$: max 2 if sex chromosomes not shown 4 half / 0.5 / 50% / 1 in 2 ; A 1:1, 50:50 R 1:2 (ii) 1 carriers have, both / H and h / dominant and recessive, alleles ; A are (iii) heterozygous **R** two alleles females have two X chromosomes / ora ; 2 [7]

- (a) (i) curve to have peaks to right of lemming peaks and must have two peaks between 1994 and 1996 and 1998 and 2000 respectively; peaks below level of lemming peaks;
 (ii) plenty / AW, of food; few / AW, predators; high population of alternative prey for predators; no overcrowding / lots of breeding sites / AW; less disease; less competition from other species; low environmental resistance;
 3 max
 - (b) *interspecific*

between two (or more) species ; two named species (on lemmings) ;

intraspecific

within species ; named species plus resource ;

if definitions of interspecific and intraspecific competition are the wrong way around can still gain one mark for correct examples of both types of competition 3 max

 (c) maximum, size / number, of a, population / species ; *either* (supported) in a particular, habitat / ecosystem / area / environment ; *or* determined by <u>limiting factors</u>;
 2
 [10] PMT

2

116.	(a)	form of <u>a</u> gene	;
------	-----	-----------------------	---

position of, gene / allele on, chromosome / DNA ;

2 3 4		better camouflaged / ora ;		
4		against, leaf litter / uniform background ;		
		relevant woodland data quote on colour and banding ;		
5	Grassland	more, yellow / banded, snails or fewer, dark / unbanded, snails ;		
6		better camouflaged / ora ; (only award if missed point 2)		
7		against, pale / yellow / green / variable, background ;		
8		relevant grassland data quote on colour and banding ;		
9 10 11 12 13 14 15 16 17 18 19	reproduce ; pass <u>alleles on</u> ref to <u>stabilisin</u> ref to other na not a very mol separate gene little mutation habitat stable ; ref to why unf AVP ; e.g. cal	es advantageous <u>alleles</u> / ora ; (to, offspring / next generation) ; <u>ng selection</u> (in both habitats) ; med selection pressure(s) ; pile population <i>or</i> little, immigration / emigration ; pools described ; taking place ; A no new camouflage method over time avourable alleles have not disappeared ; culated average figures for both habitats well organised using specialist terms ;	8 max	
	clear and well	organised and must include marking points 4 and 8	1	[11]

117. (a)	transmit (information) between neurones ; ensure one way transmission of impulses ;			
	integration of nerve pathways ; A allows, convergence / divergence / summation filter out low level stimuli ; prevent overstimulation and fatigue ;			
	ref to inhibition ; AVP ; e.g. role in, learning / memory	2 max		

	(b)	vesicles move to presynaptic membrane ; vesicles fuse with presynaptic membrane ; exocytosis / AW ; neurotransmitter moves across synaptic cleft ; neurotransmitter binds to receptor on postsynaptic membrane ; recycling of neurotransmitter / channels for uptake of neurotransmitter ;	3 max	
	(c)	 to allow repolarisation to occur ; by unblocking (neurotransmitter) receptor ; prevents sodium channels remaining open ; so more neurotransmitter can bind ; new action potential is generated ; to allow movement to occur ; recycling of neurotransmitter ; AVP ; 		
		 or permanently depolarised ; receptors (permanently) blocked ; sodium channels open ; no more neurotransmitter can bind ; no new action potential / action potentials continuously fired ; continuous contraction / AW ; no recycling of neurotransmitter ; AVP ; 	2 max	[7]
118.	(a)	estimate of role of genotype in phenotypic variation / AW; heritability = V_G / V_P ; when heritability high much of variation is, genetic / not environmental / ora; high heritability will result in successful selective breeding / ora;	2 max	
	(b)	<pre>single / major / Mendelian, gene ; large effect ; little environmental effect ; dominant allele T expressed in homo- and heterozygote ; not polygenic ;</pre>		

not additive ; discontinuous variation / not continuous variation ; qualitative / not quantitative ; 2 max

(c)	(i)	triplet of bases that does not code for an amino acid ; ATT / ATC / ACT ; code to mark end of gene ; code to stop transcription / ref to disengagement RNA polymerase ;	2 max
	(ii)	transcription halted early / AW ; protein will, be smaller / have fewer amino acids ; tertiary structure / 3D shape different ; binding / affinity, different ; protein inactive ;	3 max
		ref to <i>lac</i> operon ;	
	(iii)	ref to, promoter / operator / 'on' switch ; allele T is regulator ; (protein) binds to DNA ; (protein) binds to repressor and prevents it binding to DNA ; allows RNA polymerase to bind ; AVP ; e.g. enzyme affecting transcription	2 max
(d)	(i)	tt + T / AW, increases number of tillers per plant ; and number of branches per tiller ; ref to comparative figures ;	2 max
	(ii)	inserted into genome randomly / cannot choose where it is inserted ; may be within a frequently expressed gene ; may be after an 'on' switch ; lacks normal controls ; AVP ; e.g. no other alleles affecting it different promoter	2 max

119. 1 <u>both</u> result from changes in allele frequencies ;

- 2 selective breeding often faster than evolution / ora ;
 - 3 <u>both</u> require selection of parents ;
 - 4 to pass alleles to offspring ;
 - 5 selective breeding involves artificial selection ;
 - 6 v. evolution involves natural selection ;
 - 7 man selective agent in selective breeding;
 - 8 v. whole environment selective agent in, natural selection / evolution ;
 - 9 selective breeding for benefit of man;
 - 10 may be detrimental to organism / e.g. detriment ;
 - 11 v. fitness for environment ;
 - 12 single / few, trait(s) in selective breeding ;
 - 13 v. whole, phenotype / genotype ;
 - 14 AVP; 15 AVP;

AVP ;8 maxQWC – legible text with accurate spelling, punctuation and grammar;1

[9]

[15]

120. (i) depends on plant growth regulators ; A plant growth substances / plant hormones

	(ii)	named plant growth regulator ; produced in a variety of tissues ; may have effect at a distance ; move, cell to cell / by diffusion / by active transport / via vascular tissue via a named vascular tissue / via plasmodesmata ; different effects in different tissues ; different effects when acting together ; coordinate, growth / development / activities, of different parts ; respond to internal changes ; respond to, external / environmental / e.g. environmental, change ; AVP ; e.g. comparison with animals	2 max 2 max	[4]
121.	(i) (ii)	economy of, materials / resources ; economy of energy ; saves unnecessary, transcription / translation ; random / chance / preexisting, mutation (for resistance) ; resistants survive / suscentibles dia :	2 max	
		resistants survive / susceptibles die ; natural selection ; insecticide selective agent ; <i>A</i> selective pressure resistants pass, mutation / allele for resistance, to offspring ; R gene frequency of, mutation / allele for resistance, increases in population ;	5 max	[7]
122.	J swit can the effect reduc even in abs ref to	signal used by earworms ; tches on gene coding for E ; ten break down insecticide ; on transcription ; (× 5.5) es mortality ; in absence of insecticide ; tence of J, mortality, high / c. 87% ; comparative figures ; e.g. 87 to 48% / almost halved, in presence of insecticide 16 to 7% / more than halved, in absence of insecticide expression of E in absence of J caused by insecticide ;	4 max	[4]
123.	(a) (b)	<pre>rDNA = DNA from two sources ; both DNAs cut with, restriction enzyme / named restriction enzyme ; giving sticky ends ; or giving blunt ends to which sticky ends added ; complementary binding of sticky ends ; H bonds / e.g. A to T / e.g. C to G ; nicks in (sugar-phosphate) backbone sealed by ligase ; percentage / proportion, of, muscle fibres with central nuclei / dying muscle fibres, increases in control with time ; percentage / proportion, of, muscle fibres with central nuclei / dying muscle</pre>	3 max	

fibres, reduced by treatment ;

ref to comparative figures with percentages and day ;

- (c) *advantages*
 - 1 can identify presence of disorder ;
 - 2 removes uncertainty ;
 - 3 allows early treatment ;
 - 4 which may improve, life expectancy / quality of life ; A avoid unneessary suffering
 - 5 allows, informed choice about having children / planning healthy family ;
 - 6 allows IVF and, embryo screening / preimplantation genetic diagnosis (PGD);
 - 7 allows fetal testing and termination ;
 - 8 choice, re donation / adoption ;
 - **9** AVP ; e.g. detail of donation: AI(D) / egg donation / embryo donation

maximum 5 on advantages

disadvantages

- **10** false, positives / negatives ;
- 11 may not be test for all mutations ;
- 12 only small number tests available / not available for all conditions ;
- 13 simple presence may not result in condition ;
- 14 confirmed presence gives stress / fear ;
- **15** problem *re*, telling / testing, rest of family ;
- 16 discrimination by, employers / insurers ;
- 17 ethics of termination ;
- AVP ; e.g. detail of problem of test, risk of test procedure, diagnosis and elimination rather than treatment, increase in, intolerance / discrimination, of disabled, 'designer' problem
 maximum 5 on disadvantages

8 max

1

3

QWC – clear well organised using specialist terms; *must include both advantages and disadvantages and two terms such as* life expectancy, quality of life, IVF, PGD, PGH, AI(D), amniocentesis, CVS, karyotype, false positive, false negative

[15]

124. (i)	<pre>natural change in species composition (in an area); ref to directional change; ref to named examples in the diagram (either species or category); over a period of time; a number of recognisable stages / seres / seral stages; one sere changes the conditions for the next; e.g. depth of soil increases / soil stabilisation; leads to a climax community; creation of niches; ref to nitrogen fixation; AVP; e.g. pioneer species</pre>	4 max	
(ii)	<pre>development of deeper soil ; soil, becomes rich in humus / has more nutrients / is more fertile ; dominant species change ; plant species get larger / shrubs to trees / increase in biomass / larger root systems ;</pre>	2 max	
(iii)	<pre>biotic = animal species / number of soil organisms / decomposers /</pre>	2 max	[8]

125. award marks if diagram clearly annotated

reservoir for storage of nutrients ; ref to method for addition of nutrients and removal, of waste / products ; A substrate ref to more detail of, nutrient addition / product removal, at a constant rate /		
continually / throughout fermentation period ;		
idea of rate of product removal equal to addition of nutrients ;		
A keep volume constant		
use of probes / sensors / monitors ; A thermometer (for temperature)		
(to monitor) any two of, temperature / pH / oxygen levels;		
method to maintain pH e.g. use of buffers, tube to add acid / alkali;		
addition of antifoam;		
ref. to need to maintain sterility (to avoid contamination);		
method to maintain constant temperature e.g. (thermostatically-controlled) water		
bath, cooling jacket ; R heat exchanger		
AVP ; e.g. use of stirrer, method to avoid, clumping of cells / blocking of inlet or		
outlet pipe(s)	4 max	
		[4]

126. *any three acceptable e.g.*

disease / virus, free ;		
genetically identical / clone;		
maintain, favourable characteristics / advantageous phenotypes ;		
faster method ;		
produces many plants;		
allows long-term storage of plant tissue ;		
easily genetically manipulated / example of genetic manipulation ;		
easier exchange between countries as no quarantine ;		
enables optimal production of useful secondary products (e.g. codeine		
from poppy);		
no external environmental influences;		
no influence of seasonal variation;		
AVP ; e.g. use for, sterile / infertile, plants,		
AVP; named example of advantageous phenotype e.g. grow more vigorously		
use for rare or endangered plants		
relevant example of genetic manipulation	3 max	
relevant example of genetic manipulation	JIIIAA	FO1
		[3]

127.		answers referring to insulin production can also be credited in mp 2,3,4	
	1	Escherichia coli ; A E. coli	
	2 3 4 5 6 7	genetic engineering3 maxamino acid sequence (of HGH), known / analysed;3 maxgene coding for HGH synthesised;	
	5 6 7 8	plasmid (vector) ; cut using restriction (endonuclease) enzyme ; ref to gene and plasmid mixed with (DNA) ligase ; (recombinant) plasmid introduced into, bacterium / bacteria ; AW	
	9	large scale production4 maxgenetically engineered / recombinant bacteria ;	
	10	grown in fermenter / fermentation, qualified ;	
	11	reproduce / replicate / multiply / undergo binary fission / form a clone	
	12 13	 / large numbers / millions of bacteria / gene cloning ; idea of gene expression / transcription and translation, for HGH, synthesis / production ; A <i>insulin when relevant</i> downstream processing ; 	
	14	separation / purification, of growth hormone; A insulin when relevant	
	15 16	 AVP ; e.g. ref to screening using antibiotic resistance markers AVP ; scaling up to determine optimum operating conditions bacteria killed and separated (from proteins) by centrifugation growth hormone separated from other, proteins / molecules (product separated by) large scale chromatography / ultrafiltration other detail of fermentation e.g. pH 5.5 – 8.0, temperature 20 – 45 °C, aeration, glucose doubling time 20 minutes 	6 max
		QWC – clear, well organised with specialist terms ;	1
		<i>any three, used in context, from</i> amino acid sequence (beta cells for insulin) / triplet (mRNA for insulin) / genetic code (reverse transcriptase for insulin), plasmid, vector, restriction enzyme, ligase, recombinant, genetically engineered, binary fission, clone, transcription, translation, downstream processing, screening, antibiotic resistance markers, centrifugation	

cerebrospinal fluid; absorbs shocks ; brain protected by, cranium / skull; spinal cord protected by vertebrae; 3 max **129.** (i) time taken (to make choice) decreases ; as number of trials increases / AW; ref to figures ; idea chamber **B** chosen more often towards end of investigation ; 2 max (ii) same, apparatus / conditions ; different experimental mouse ; idea of same species / same age / same gender, of (experimental) mouse ; no companion mouse / **B** and **C** empty ; same number of trials; AVP; 3 max (iii) time taken does not decrease significantly; roughly equal choice of chamber \mathbf{B} or \mathbf{C} / AW ; 1 max trial and error learning / operant conditioning ; (iv) ref to associative learning ; companion animal is, reinforcer / reward ; no conditioned stimulus; no conditioned response ; AVP; 3 max

128. surrounded by meninges ;

[9]

[3]

130. (a)	plasmid DNA	protein		
	nucleotides / sugar + phosphate + base ; 4 different subunits ; phosphodiester bonds ; A phosphoester contains P ; double-stranded / double helix ; circular ;	amino acids ; 20 different subunits ; peptide bonds / polypeptide ; contains S / disulphide bonds ; may have 4° structure ; ref to, 2° / 3°, structure / AW ;		
	AVP ; e.g. role of H bonds	3 max		
(b)	(i) stimulates, immune response / produ			

(ii) stimulate, cell-mediated immunity / T cells;
antigen, remains in body longer / continuously produced;
antigens in blood only stimulate, humoral immune system / B cells;
antigens (in blood) lost in urine / broken down in liver;
ref to MHC;

	(c)	(i)	binds RNA polymerase ; allows, transcription / production of mRNA ; switches gene on / allows gene expression ;	2 max	
		(ii)	(protect against) more than one, strain / disease / pathogen / AW ; stronger immune response ; less likely mutant form will escape immune response / AW ; AVP ; cheaper / reduces number of vaccinations	2 max	
		(iii)	Golgi modifies <u>protein</u> / <u>polypeptide</u> / AW ; forms glycoproteins / add sugars <i>or</i> carbohydrate ; Golgi forms vesicles ; incorporated into cell membrane ; R exocytosis		
			AVP;	2 max	
	(d)	cells	that take up DNA vaccine might		
		1 2 3	function less well ; be killed by immune system / trigger auto-immune response ; have genes disrupted / mutation ;		
		4 5 6	new gene might be inherited / AW ; plasmid could enter bacteria ; superbug / create new disease / AW ;		
		7 8	effects unknown / new technology / no human trials ; AVP ; ref ethics, ref irreversible	3 max	
					[14]
131.					
	V; Z; S;			4	
	з,			4	[4]
132.	(a)	(i)	AaBB white; aaBB black;		
			Aabb black, Aabb white; aabb brown;	4	
		(ii)	(dominant) epistasis;	1	
		(iii)	codes for inhibitor;	-	
		× 9	protein; blocks transcription (of allele coding for pigment);		
			ref to, regulator / promoter;		
			blocks enzyme (producing pigment); AVP; e.g. detail	max 3	

(b) (i) $AaBb \times AaBb / AaBb \times Aabb;$

	 both must have A because they are white; * both must, have a / not be homozygous AA, because some kittens coloured; * both must have b to give brown kittens; <i>`must be heterozygous at both loci' = 1 only</i> 		
	at least one / one or both, must have B to give black kittens; credit ref to Punnett square showing genotypes; credit ref to Punnett square showing phenotypes;	max 5	
(ii)	AaBb × AaBb 12 white : 3 black : 1 brown;;		
	AaBb × Aabb 6 white : 1 black : 1 brown;;	max 2	[15]

133.	(a)	(i)	gradual process / AW; to improve traits; to achieve homozygosity / AW; best in each generation interbred; ref to artificial selection;	-
			ref to several traits involved / may be, additive / polygenic;	max 2
		(ii)	ref to mitosis; chromosomes replicated; failure of, spindle / cell division; colchicine / other method;	max 2
		(iii)	self-pollination prevented; pollination by foreign pollen prevented; pollen transfer; practical detail;	max 2
		(iv)	3n; meiosis fails; ref to, synapsis / homologous pairs;	max 2

	(b)	(i)	sterile explant; sterile nutrient medium; ref to plant growth regulators; <u>callus;</u> subdivided; medium with different plant growth regulators; plantlets / embryoids; hardening medium / sterile soil; AVP; e.g. appropriate plant growth regulators	max 5	
		(ii)	callus can be divided; large numbers of identical plants; A clone in short time; bulk up sterile hybrid; bulk up master hybrid lines; no need for making more 4n;	max 2	[15]
134.	scale meas high value ease	value r < <0.02 of selec	ng'; genetic v. environmental contribution; nost easily selected for; results in no selective breeding; ction = 'marbling'>growth rate>subcutaneous fat>'rib eye'; / even 'rib eye', can be selected for;	max 3	[3]
135.	no / 1 reduce ref to reduce ref to	ess, ins ed nur figure ced cos figure limita	use of, GM crop / GE crop / Bt cotton; secticide needed; nber of cases of pesticide poisoning; is (e.g. by \times 4.4); t (insecticide); is (e.g. by 0.62 US\$ kg ⁻¹ / \times 1.38); tions of survey;		

A reverse arguments

max 4

[4]

136.	(i) (ii)	ref to, rDNA / recombinant DNA; restriction enzyme(s); cut DNA at specific site(s); detail site(s); ref to viral DNA and, human DNA / DNA of gene; ref to sticky ends; complementary binding; detail of binding; $A = T / C \equiv G / hydrogen bonds$ ligase to seal 'nicks' in (sugar-phosphate) backbone; has effect when added to genome; not masked; no need to, remove / inactivate, recessive / mutant, allele;	max 4 max 2	[6]
137.	(i) (ii)	trees are living organisms; renewable; ref to, growth / growing; timber is, of use to human beings / made into products; harvested at levels which leave sufficient organisms; to grow / reproduce, and replenish what has been harvested; ref to, coppicing / replanting / afforestation; can be carried on indefinitely;	max 2 max 2	[4]
138.	(a)	cyclamen mite / prey populations increase; when conditions are suitable / when predator numbers are low / no or few limiting factors; provides plenty of food for predator mites; which begin to increase <u>later</u> / time lag; cyclamen mites are then eaten by (increasing numbers of) predators; so both decline in numbers; cycle repeated; prey populations reach higher levels than predators;	max 4	
	(b)	 (i) start by looking at end of February increases with appropriate time lag; decreases at spraying times (end of June / beginning of October); final peak for predator numbers is the lowest; (ii) less food available / less strawberry plants; low temperature / frost; other predators; disease / parasites; ref to parasitoids; AVP; R spraying idea 	max 2 max 2	

(c) (i) biological (pest control); 1 (ii) insecticides, are harmful to other organisms / may kill natural predators to the pest; reduces species diversity / disrupts food chains; many insecticides are, slow to biodegrade / long lasting; concentrate along food chains / bioaccumulate / bioconcentrate; stored in fat deposits of organisms; ref to effects on top carnivores; e.g. egg shell thinning poisonous to those applying them; A ref to humans / asthma sufferers pests can build up a resistance; ref to selection; run-off from land carries them into water supplies / causes pollution / poisons aquatic organisms; problems of residues in food; AVP; e.g. pesticides need to be used repeatedly max 5 crop rotation; (d) intercropping; release of, irradiated / sterile, males of pest species; AVP; e.g. fly paper max 2 [16] **139.** (a) trees felled for wood to, sell / export; cleared to provide land for agriculture; A cattle ranching to build, housing / villages; industrial development / mining / quarrying; building of roads; max 3

(b)	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	high, biodiversity / species div deforestation, causes extinction decrease in, size of gene pool / act as carbon, reservoirs / sinks remove carbon dioxide from at release of carbon dioxide when less photosynthesis also means transpiration contributes to atm destruction of rainforests disru rainforests can be used to supp example of crop; e.g nuts / rub drugs / other useful compound occur in rainforests; soils are nutrient deficient and increased risk of soil erosion; moral responsibility to conserv ref to indigenous populations / AVP; e.g. provision of hab ref to Fig. 1	n / reduces biodiversity; ' genetic diversity; s; R carbon fixation tmosphere; n wood is burnt; a less oxygen production; nospheric water content; pts water cycle; ly sustainable crops; ber / fruits / plant oils s (may await discovery), that only cannot sustain agriculture; ve for later generations; tribes;	max 8
(c)	introd trade s schem develo	<i>context</i> biodiversity deforestation carbon reservoirs / sinks photosynthesis import of wood from, tropical uce labelling system for wood; anctions on countries that cont	<i>f the following are used in correct</i> transpiration water cycle sustainable nutrient deficient rain forests / unsustainable sources; inue to remove rain forests; ag up of sustainable use of rain forests;	1
		reserves established; e.g. debt relief fair trade schemes quotas		max 3

140. (a) *advantages (max 2)*

can be used with any species (irrespective of size); does not require to distinguish one individual from another; quick to assess; **R** simple

disadvantages

subjective / AW; dominant species may be over-estimated;

max 3

[15]

[17]

(1)	(1)		
(b)	(i)	line established, from shore to dune slack / from to; <u>quadrat</u> used; suitable size / actual size stated (minimum 0.25m ²); R if no units given placed continuously / at specified intervals along line; key to identify species; abundance recorded in each quadrat;	
	(ii)	 bare ground recorded; 1 ACFOR scale converted to numerical scale; 2 reading at each site recorded (on graph paper); 3 width of diagram related to ACFOR (maybe shown on diagram); 4 points from each site joined together; 5 repeated for each species found present; 	max 4 max 3
(c)	probe pushe	f, thermometer / probe; e must be calibrated; ed into, sand / soil, to same depth each time; itions at each sampling point;	max 2
(d)	(i)	a stage during the process of succession;	1
	(ii)	<pre>sea couch / marram grass, grow in bare sand; dune builds up / stabilised by grasses; OR colonisers established on bare, rock / soil; example; (if not sand dunes)</pre>	
		ref to pioneer species; organic matter builds up / humus content increases; forming soil / depth of soil increases; other species take over from grasses; A named example from Fig. 1 roots stabilise soil structure; diversity of species increases; climax eventually reached; AVP;	
		AVP; e.g. reference to deflected succession, growth of shrubs	max 4

141.	(a)	(i)	penicillin;	A other named antibiotic	1
		(ii)	(complex organic molecules) p the (log / rapid / main) growth not essential for normal, cell g	-	max 1
		(iii)	batch / fed batch;		1
			nutrients only added at start; short / rapid, growth phase; required product made, during cycle; ora R death phase shortage / depletion of, nutrien cell division / reproduction, no ref to addition of, glucose / lac (to avoid death of culture);	e ts / named nutrients; longer occurring;	max 2
	(b)	1 2	air pressure will push the medi medium / nutrients, added to th	um into the culture vessel; ne culture at a constant rate / AW;	
		3 4 5 6 7	algae / cells / <i>Chlorella</i> , remov at the same rate as / to match, t so volume in fermenter remain removal of, waste / toxic produ that could affect, growth / repr	s constant; acts;	
		8	(cells kept in) exponential / log	g / rapid / main, growth phase;	
		9 10 11 12 13 14 15 16 17	algae are photosynthetic; light <u>energy</u> required; ref to use of fluorescent light to ref to monitoring temperature; ref to optimum conditions; \mathbf{A} ' air bubbles to mix culture with air bubbles to allow algae to ge air bubbles provide oxygen for and CO ₂ for photosynthesis;	conditions for maximum growth' nutrients / AW; et sufficient light;	
		18 19	air flowing into the culture ves preventing build-up of pressure	sel flows out through an outflow tube; e;	
		20	AVP; e.g. sampling to check for	or mass of <i>Chlorella</i>	max 6

1	>
1	<u>۲</u>
- U	$\overline{\mathbf{v}}$

		difficulty maintaining a constant temperature;) one mark for ref to difficu		
		difficulty maintaining a constant pH; \int controlling environmental	factors	
		 heating / cooling, qualified; foaming; blocking of, inlet / outlet, tubes; difficulties with, mixing / stirring; contamination / keeping it sterile; conditions need to be continuously monitored; nutrient requirements may change; AVP; AVP; e.g. algal growth on glass difficulties in providing sufficient light errors lead to loss of several days production of <i>Chlorella</i> 	max 4	[15]
142.	(i)	RNA(i) combines with mRNA; e.g. of base pairing (but not T) A-U / G-C; stops translation; ref to stops mRNA combining with ribosomes; stops protein synthesis;	max 3	
	(ii)	chemicals / enzymes in, mouth / toothpaste / bacteria; denature / degrade, RNA; RNA not normally taken up by bacterial cells; short life of RNA; RNA not replicated in bacteria when bacteria reproduce; toothpaste in mouth only for short time; AVP;		
		AVP; e.g. washed away by saliva	max 2	[5]
143.	(a)	(i) amylase;	1	

143. (a)	(i)	amylase;		1
	(ii)	glycosidic;	R glucosidic	1
	(iii)	alpha / α;		1

	(b)	(i)	encapsulation / trapped in alginate beads; adsorption <i>or</i> stuck onto, collagen / clays / resins; cross linkage or covalent / chemical bonding to, cellulose (fibres); gel entrapment / trapped in silica gel; partially permeable membrane microspheres;	max 2		
		(ii)	does not mix with / does not contaminate / stays separate from, the product; ref to, no / less / easier, downstream processing;			
			recoverable / not lost during processing; reusable / cost effective;			
			matrix stabilises / protects the enzyme; so activity not affected by changes in, temperature / pH <i>or</i> run at a high temperature / wider range of pH;			
			longer, use / shelf-life; so suitable for continuous culture / cost effective / greater yield;			
			AVP;			
			points can interchange if valid	max 4		
	(c)	not necessary to start with a pure enzyme; keeps the enzyme away from oxygen; more enzymes involved; cell produces enzymes; AVP; e.g. enzyme(s) may be, expensive / difficult to isolate simultaneous processes can occur			[11]	
144.	(a)	(i)	automatic requires no (conscious) thought / AW;			
		(ii)	<i>stereotyped</i> carried out by all individuals in a species / always carried out in same way / AW;			
		(iii)	<i>conditioned</i> (response) can be, modified / produced, following exposure to 'new' stimulus / AW;	3		
	(b)		y response, provided correct stimulus is given; n-mammalian example R examples of conditioned reflexes	1		
	(c)	D1 D2 D3 D4 D5 D6 E1 E2 E3 E4 E5 E6 E7 E8	 (at first) cat pulls, loop accidentally / AW; ref to trial and error; freedom is a, reward / reinforcer; associative learning; detail (of associative learning); pulls loop sooner / AW; correct ref to acclimatisation period (when cat placed in box) / AW; AVP; e.g. other behaviours / inactivity, not, 	ax 4 ax 5	max 7	
------	-----	--	---	--------------	-------	------
			QWC – legible text with accurate spelling, punctuation and grammar;		1	
	(d)		ward / punishment (of behaviour), in classical; ora atimulus in operant / two stimuli in classical; ;		max 2	[14]
145.	(a)	cerel	bellum			
		(cont (cont AVP <i>medu</i> initia contr	<i>ulla oblongata</i> tion / control of, breathing rate; rol of heart rate; rol of blood pressure; R initiation of heart rate	te	max 2	
		control of peristalsis (in alimentary canal); AVP;			max 2	
	(b)	(i)	build up of, tau / protein;		1	
		(ii)	secretion of / high levels of, $A\beta 42$ / beta amyloid 42 / abnormal $A\beta$; R $A\beta 40$		1	

[14]

(c)	binds preve comp differ enters allost chang	ar shape to, acetylcholine / ACh; to / enters, active site; ents ACh entry; petitive (inhibitor); rent shape to ACh; s / binds, but not at active site; eric / indirect; ge in, tertiary structure / shape of active site; competitive (inhibitor);	max 3
(d)	ACh on <u>po</u> depol	ents ACh breakdown / increase ACh level; binds to, proteins / receptors; <u>ost</u> -synaptic membrane; larisation / action potential / impulse (produced; ates memory circuit / AW;	max 2
(e)	<pre>control group; given, placebo / tablet / injection / no drug; idea of 'double-blind' trial, i.e. neither patient nor doctor aware of which treatment each patient receives; random assignment of each patient to one group; similar severity of symptoms before trial; control of age; control of gender; control of gender; control of diet; control of drug, dosage / administration; not taking any other, drug / medication; ref to suitable sample size; AVP;</pre>		
(a)	1:2:	:1;	1
(b)	1	ref to, codominant / equally dominant (alleles); A incomplete dominance but R genes as alternative to alleles	
	2	appropriate symbols for two codominant alleles; eg G^1 and G^2 R a capital and a lower case symbol or two different letters such as G and Y	
	3	parent plant shown or stated to be heterozygous; A if it is explained that any sunny plant is heterozygous	
	4	gamete genotypes shown appropriately;	
	5 6	correct offspring genotypes; the 'Sunny' / yellow-green, were heterozygous / genotype shown	
	7	by diagram; the dark green / the yellow, were homozygous / genotype shown	_
		by diagram;	max 5

(c) 1 ref to, randomness / chance (sampling);

146.

		2 3 4 5 6 7 8 9 10	ref to random fertilisation; totals are (quite) a large sample, pot B / single pot / six, is a small sample; if (only) six seeds, there is a greater chance of departing from an expected ratio / AW; probability of six seedlings all the same is $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$; with, many seedlings / the totals, the deviations of the individual results cancel out; some departure from an expected ratio is always likely / idea; only the yellow number (33) deviates from the expected / 28 is half 56; chi squared test could be used; AVP;	max 3	
		10	Αντ,	max 5	
	(d)	A chloroplast as alternative to chlorophyll			
		canno die w	w seedlings have, no / very little, chlorophyll; ot photosynthesise; 'hen, energy reserve / carbohydrate (accept food), in seed is usted;		
		(than so da	green grow more because they have more chlorophyll the yellow-green); rk green have more, photosynthetic products / named product; competition between the seedlings;		
			, selection / selective advantage;	max 3	[12]
147.	(a)	disso	lve / destroy, cell membranes (idea);	1	
	(b)	no lo: musc idea	t the receptor / prevent ACh from binding; nger able to stimulate post synaptic membrane; le fibres, not stimulated (by nerve fibres) / do not contract; A tetany ; e.g. ref to lack of synaptic transmission	max 2	
		AVI	, e.g. fer to fack of synaptic transmission	max 2	
	(c)	huma one / (able these expan mitos has n	acts too fast, for immunity / antitoxin to develop (idea); in unlikely to have been, bitten before / exposed to toxin or antigen; a / few (immature), lymphocyte(s) / stem cell(s) to bind the toxin); must be stimulated to divide / ref to clonal selection <i>or</i> clonal nsion; bis takes too long; o memory cells;		
		AVP	· · · · · · · · · · · · · · · · · · ·	max 2	

(d)	more, antibody-secreting cells / B lymphocytes, produced; enough / more, antitoxin produced; (idea of good yield) faster / goes on for longer; <u>secondary response;</u> more mitosis (of antibody producing cells); second injection of toxin would result in <u>clonal expansion;</u> ref <u>memory cells;</u> AVP; e.g. large dose would kill the horse	max 3	
(e)	antibody / antitoxin, only remains in, blood / body, for short time; acquired immunity / passive immunity; person not themselves producing any antitoxin; no clonal selection; no memory cells; immune system will (soon) reject / destroy the (foreign) horse antibody; AVP; e.g. further detail explaining why immune system not stimulated different snakes have different toxins	max 2	[10]

- **148.** 1 sun is the energy source (for the system);
 - 2 producers / (green) plants, trap / use / absorb (sun's energy);
 - 3 <u>photosynthesis;</u>
 - 4 not all energy trapped <u>and</u> reason;
 - 5 energy used for, plant metabolism / plant processes / e.g.; A respiration
 - 6 so this energy not, passed on / available, to consumer;
 - 7 (some energy) used for, growth / storage;
 - **8** so this energy is, passed on / available, to consumer;
 - 9 1[°] consumer / herbivore, eats, producer / plant;
 - **10** some producer, not edible / not accessible / e.g.;
 - 11 some, not digested / egested / lost as faeces;
 - 12 2° consumer / carnivore / omnivore, eats, 1° consumer / herbivore;
 - 13 some parts of animal not edible / e.g.;

	14 15 16 17 18 19 20 21	 energy used by animal in moving (to feed); energy, used / lost, in, digestion / excretion / sweating / e.g.; A respiration transfer / loss, to, decomposers / bacteria / fungi / saprotrophs; energy lost as <u>heat</u> from respiration; net productivity = gross productivity – respiration; some ref to estimate of efficiency of transfer (a general statement); quote of (comparative) figures from diagram; manipulation of figures to illustrate a point; NOT 6612 and 14198 		
	22 23 QWC	 AVP; AVP; e.g. loss out of ecosystem another manipulation of figures available energy limiting length of chain C – legible text with accurate spelling, punctuation and grammar; 	max 9 1	[10]
149.	cheaper; ref to compatibility / less chance of rejection / fewer side effects; stated ethical issue; e.g. don't need to kill animals / removes religious objections ref to contamination / easier to purify / ref to disease; consistent quality; more effective (as human in origin); production level can meet demand / reliability of supply / faster production; <i>ignore greater production</i>		2 max	[2]

150.	(i)	restriction (enzyme) / endonuclease;	1	
	(ii)	this may be answered in the context of inserting into a plasmid.		
		cut DNA with restriction enzyme; ref to sticky ends; <u>complementary;</u> base pairs / CCC and GGG / C pairing with G / alternative; (DNA) ligase / ligation; ref to bonding / AW; e.g. hydrogen <i>or</i> phosphodiester / sugar-phosphate AVP; e.g. add sticky ends to blunt ends cut both at the same place	3 max	
	(iii)	codes for, protein / polypeptide / enzyme; A ref to, protein synthesis / transcription / translation		
		(enzyme) catalyses / causes, condensation / formation of glycosidic bonds / reaction (between, mannose / sugars);	2	[6]
151.	1 2 3 4 5 6 7	genetic, testing / screening; for inherited disease / AW; (test to see if) individual is carrier; premarital testing / predict if (potential) offspring may inherit the disease; antenatal testing; ref to termination; embryo selection (to ensure embryo healthy); R selection of sex		
	8 9	(test for genes that contribute to) diseases that develop later in life; those with genes given, advice to limit effects / counselling;		
	10 11 12 13 14 15	faster / earlier, diagnosis; develop more, effective / efficient, drugs (to combat disease); drugs have direct effect, on genes / protein made from specific gene code; gene therapy / correct the base sequence of faulty gene; economic implications / AW; AVP; e.g. ref. to method used / use of gene probes / biopsy		
	16	AVP; allows targeting of drug treatment	4 max	[4]

152.	many discrin discrin reliabi examp cost to rich po	ty about (future) health / may not want to know / AW; diseases we can test for have no treatments; mination by employers; mination by, insurance companies / banks; ility of tests in question; A false, positive / negative, result ole of disease given in context; b, NHS / government; eople can benefit / poor will not benefit; ; e.g. moral issues associated with embryo selection eugenics parents feelings towards child presence of allele may not cause disease / ref to multifactorial diseases ref to storage of data and freedom of information / invasion of privacy / question of paternity	
	R 'pla	aying God' / cloning 4 max	[4]
153.	gamet offspru offspru expect accept Punne use ec	tal genotypes $RrBb \times Rrbb;$ tes $RB Rb rB rb$ $Rb rb;$ ing genotypes $RRBb RrBb (RrBb) Rrbb RRbb (Rrbb) rrBb rrbb;$ ing phenotypesrough black rough white smooth black smooth white;ted ratio3:3it correct gametes, offspring genotypes and offspring phenotypes ineft squareeft except for ratioReject the ratio $6:6:2:2$ mot a stand alone mark – there must be some correct working to support it	[5]
154.		length of DNA; codes for a (specific), polypeptide / protein / RNA; found at a, locus / particular position on, a chromosome;2variety / form of a gene; \mathbf{R} type of gene \mathbf{A} type of a gene1assume the allele = coat colour allele1	
		 (coat colour) gene / alleles, only on X chromosome; A no (coat colour), gene / allele, on Y chromosome male cats, XY / only have one X chromosome; (males have) only one (coat colour) <u>allele</u> / cannot have two 	
		(coat colour) <u>alleles;</u> need black and orange <u>alleles</u> for tortoiseshell colour; max 2	[5]

- **155.** 1 ref to <u>operon;</u>
 - 2 normally <u>repressor</u> substance bound to <u>operator</u>;
 - 3 prevents RNA polymerase binding (at promoter) / prevents transcription;
 - 4 lactose binds to <u>repressor</u>;
 - 5 changes shape of protein molecule;
 - 6 unable to bind (to operator);
 - 7 RNA polymerase binds (at promoter) / transcription occurs / genes switched on;
 - 8 production of <u>lactose permease</u>;
 - 9 production of $\overline{beta galactosidase}$;

[5]

156.	(a)	$R^R R^R$	- low,	do not have enough vitamin K in diet / ref to figures;		
		R ^R R ^S	- high,	(warfarin resistant) and have enough vitamin K / ref to figures;		
		$R^{S}R^{S}$	- low,	will be killed by warfarin / ref to effects of warfarin;		
		If quote probabilities for survival less than 50% is low and over 50% is high			3	
	(b)	(i)	(i) mutation / named mutation; change in DNA base sequence; n			
		(ii)	 (ii) variation within population; some individuals produce enzyme not susceptible to warfarin; these individuals survive / selective advantage; reproduce / breed; pass, resistance / advantageous <u>allele</u>, to offspring; R gene those without resistance die; ref to selective pressure of warfarin; 			
 (c) does not directly involve humans; environment selects individuals that will reproduce; 				max 1		
	(d)	increa	se; at a disadva	^k , will decrease and , susceptible allele / R ^S , will ntage due to vitamin K requirements / R ^S R ^S at e due to warfarin being removed;		
			-	oth alleles will stay the same;		

must be linked to second statement no longer any selective pressure / no directional selection;

[12]

[9]

157.	(a)	B; C; D; A;		4
	(b)	(i)	award two marks if correct answer (26.18/26.2/26) is given	
			$24 \times 60 = 1440 \div 55;$	_
			26.18; A 26 / 26.2	2
		(ii)	less oxygen / <i>ora</i> ; reduced amount of nutrients / <i>ora</i> ; ref to pH / <i>ora</i> ; competition from other bacteria / interspecific competition / <i>ora</i> ; use of antibiotics; AVP; ref to intestinal enzymes or immune system R reference to temperature	
			treat toxins as neutral	max 3
158.	(a)	(i)	Aabb - pink; aaBB - green;	2
		(ii)	<pre>(dominant) epistasis; ref to, epistatic / hypostatic, gene; ref to, promoter / gene switching; increased, transcription / expression; AVP; enzyme to alter pigment / change structure of pigment / make more pigment / complementary action</pre>	max 3

(b)	(i)	parents gametes offspring ratio	AB Ab aB al genotypes;; <i>n</i> phenotypes r	AaBb) red spines × (aabb) green spines; AB Ab aB ab × ab; A from Punnett square genotypes;; minus 1 for each of first two mistakes bhenotypes related to genotypes; A key red spines : 1 pink spines : 2 green spines;			max 5	
		gametes ab	AB AaBb	Ab Aabb	aB aaBb	ab aabb		
			red spines	pink spines	green spines	green spines	7	
	(ii) many AaBb and ref 1 : 1 ratio of ref linkage; ref parental type;		atio of these; e;					
			,					
		few / no, j 1 : 1 green		green than red;	ai / ganag arat			
		rei propor	uons depend (on how close, lo	ci / genes, are;		max 5	[15]

159. (a) **1**

prevent, self-pollination / unwanted pollination, of flowers;
 detail of prevention;

- 3 cross-pollinate two varieties; A crossed / mated / hybridised
- 4 detail pollination;
- 5 isolate, plants / flowers;
- 6 collect seeds and sow;
- 7 in high salt concentration;
- 8 select plants, which survive / can tolerate, high concentration;
- 9 and have large, tasty tomatoes;
- 10 interbreed these plants;
- 11 repeat selection;
- 12 ref many generations;
- 13 cross with variety with large tomatoes to improve size;
- 14 cross with variety with good flavour to improve taste;
- 15 ref backcrossing with original variety for salt tolerance;
- 16 AVP;
- **17** AVP;

max 8

1

e.g. ref background genes / hybrid vigour / heritability / effect on vigour / ref setting up pure-breeding initial lines

QWC – legible text with accurate spelling, punctuation and grammar;

	(b)	 (i) active transport; (energy from), ATP / respiration; against concentration gradient; ref binding site for ion / AW; ref change of shape of protein; (ii) GE quick(er) / SB slow(er); (tolerance) in one generation (v. many generations); ref one gene / rest of genome unaltered (v. hybridisation); background genes intact (v. need for backcrossing); different varieties engineered for different conditions; no problem re interbreeding; can select, transporter system / AW, / from, another species 	max 3	
		/ named taxon; can select, transporter system / AW, / for maximum efficiency; AVP;	max 3	[15]
160.	(i)	mutation; chance / random / preexisting; insecticide acts as selective, agent / pressure; susceptibles die / resistants survive; resistants pass, mutation / allele, to offspring; A gene	max 3	
	(ii)	mosquito is vector; A carrier obligatory / AW; part of life cycle is in mosquito; not killed by insecticide;	max 2	[5]
161.	(i) (ii)	DNA from two different sources; combined / joined / AW; restriction enzymes cut DNA; at specific sites;	2	
		detail of sites; may give sticky ends; <u>complementary</u> sticky ends join; terminal transferase / enzyme, adds sticky ends; ligase joins, gaps / nicks;	max 3	[5]

162.	(i)	fewer genetically engineered mosquitoes pass parasites across midgut ; A figures fewer g e mosquitoes have parasites in salivary glands; A figures fewer g e mosquitoes can infect (uninfected) mice; A figures 'less good as vectors' instead of all of first three points = 1 only use of comparative figures;		max 3	
	(ii)	<i>benefit</i> one of following; reduce use of, insecticide / drug safer than, insecticide / drug AVP <i>hazard</i> one of following;		max 1	
		parasite may develop resistance gene may pass to other species AVP		max 1	[5]
163.	(i)	anaerobic conditions encourage denitrifying bacteria; convert nitrate ions to (gaseous) nitrogen; reduces available nitrogen;			
		sundew does not rely on, soil nitrate / soil nitrogen; ref to, hydrolysis / digestion / use of enzymes, on insect proteins; releasing amino acids; ref to deamination; max	x 3	max 4	
	(ii)	Reduces amount of air in soil; roots starved of oxygen; respiration becomes anaerobic; insufficient energy released; not able to absorb (enough), ions / named ion;			
		via active transport;		max 3	[7]
164.	(a)	set out a grid in each area <i>or</i> site / description of how the grid is established; use random numbers; how generated; e.g. random number tables / use of calculator to give co-ordinates; at that point / co-ordinate, measure nearest plant; repeat (14 times);		max 4	

 (ii) measure of, variability / spread of heights (in sample); R range sum of differences from the mean; 	
68% of values lie within mean \pm 1 S.D.; 95% of values lie within mean \pm 2 S.D.; max 2	
5570 of values ne within mean ± 2 5.D., max 2	
(c) greater spread from mean in site B / <i>ora</i> ; R range	
height of plants in site B is more variable / ora ; max 1	
(d) (i) that there is no <u>significant difference</u> ;	
between the mean height in site A and the mean height in site B ; A results any difference is entirely due to chance; max 2	
(ii) there is a <u>significant difference</u> between the means at the two sites;	
the <u>difference</u> is due to something other than chance; reject the null hypothesis;	
with 28 degrees of freedom;	
at the 5% confidence level; A p<0.05 / <0.01 / <0.001	
the critical t value is, 2.05 / 2.76 / 3.67; calculated value, exceeds / is much higher than, this;	
assuming the sample shows a normal distribution; max 4	
[1	[15]
accept reverse arguments if responses are referring to careal plants	

165. accept reverse arguments if responses are referring to cereal plants both have root nodules; with <u>Rhizobium</u> bacteria; which are nitrogen-fixing; convert nitrogen (gas), to nitrate ions / ammonium compounds; $\mathbf{A} \operatorname{NO_3^-}/\operatorname{NH_4^+}$ **R** ammonia / NH₃ plants convert these to amino acids; which are used to make protein; high levels of proteins stored in seeds; max 4

[4]

166.	(i)	attached to an insoluble material / AW;	1	
	(ii)	<pre>(micro)encapsulation / (trapped) in alginate beads; adsorption / stuck onto, e.g. collagen / clays / resin / (porous) glass; cross linkage or covalent / chemical bonding to, e.g. cellulose / collagen fibres; gel entrapment / trapped inside gel e.g. silica (lattice / matrix); partially permeable membrane (polymer) microspheres;</pre>	max 2	
	(iii)	urine can be processed / no problem of removing urine / AW; pure / drinkable / useable, water produced; A water recycled space saving / less water needs to be taken into space; payload limit / weight reduction / AW; no need to take more enzymes into space / enzymes reusable; A enzymes recoverable no problem in separating enzyme from products / product not contaminated; ref to longer shelf-life of enzyme; AVP; e.g. larger surface area of enzyme exposed, more stable at extremes, ref to ease of use (of bioreactor)	max 3	[6]
167.	(i) (ii)	adding / using, <u>water</u> ; breaking, bond / ester bond (in molecule); A breakdown into smaller molecules matrix, protects / stabilises, (immobilised) enzyme / lipase; <i>allow once</i> so will function, at optimal rate / more efficiently (than soluble), at higher temperature / 45 °C; A greater activity / AW ref to soluble lipase begins to denature (reducing activity); <i>ora</i> continues to work, at optimal rate / more efficiently, at <u>lower</u> pH; ref to presence of fatty acids changing pH;	2	
		ref to ionic bonds breaking (in soluble lipase); <i>ora</i> AVP; e.g. ref to industrial uses, ref to effect on R groups	max 4	[6]

168. (a) odd number of sets of chromosomes / AW; homologous pairs not formed; A ref to difficulties in pairing during meiosis; allow point if reference made to causing problems during meiosis does not form seeds; max 2 (b) ref to, sterile conditions / aseptic techniques;

(small) piece of plant tissue removed; **A** take cuttings ref to named tissue; e.g. meristem, axillary / (apical) buds explant;

or leaf removed; enzymes / cellulases / pectinases, to remove cell wall; protoplasts formed; growth on nutrient medium; plant growth regulators / named growth regulator; **R** hormones rooting; incubation in light; plantlets; subdivide; handling, medium / sterile soil; AVP; AVP; e.g. remove wax from leaves callus culture / mass of undifferentiated cells forms ref. auxin to cytokinin ratio Murashige and Skoog (M & S) medium further detail of culture method / aseptic technique max 5

(c) *max 4 for either*

advantages many plants; genetically identical; (so) all have desired, characteristics / genotypes / phenotypes; no need for (artificial) selection; can be obtained in short space of time / AW; easy to, transport / store; **A** ref to space saving easy to genetically engineer; disease / virus, free;

disadvantages genetically identical, qualified in terms of disadvantage; susceptible to disease; loss in genetic diversity (as cloned plants are grown exclusively); farmers have to buy plants from suppliers / AW; ref to economic problems for developing countries; e.g. start up costs patented property;

AVP;

AVP; e.g. no quarantine required, ref. to cost qualified, not labour intensive (advantages), genetically unstable (disadvantage) max 5

[12]

[14]

169.	(a)	(i)	temperature; concentration of, substrate / sugars / carbohydrates; R volumes / amounts concentration of yeast; R volume / amount pH / carbon dioxide concentration; oxygen availability; concentration of, alcohol / ethanol / toxic waste; AVP;	max 3
		(ii)	carbon dioxide; $\mathbf{A} \operatorname{CO}_2$	1
	(b)	(i) (ii)	one mark for slow, fast, slow / nothing initial gas production slow, ref to time; rapid rate, ref to time; little gas production, ref to time; ref to actual volumes; any rate calculated; ref to (aerobic / anaerobic) respiration; slow gas production transport of glucose into yeast cells takes time; A absorbed / taken up by yeast detail; e.g. ref to carriers rapid rate of respiration	max 4
			 high substrate concentration in yeast cells; <i>rate slows</i> substrate runs out; or other factor(s) / named factor, affect the rate; AVP; e.g. increase in number of yeast cells increases rate of respiration, qualified ref to time taken for adjustment to conditions (in slow production) 	max 4
	(c)	enzyn not pr genes time ref to	er rate of respiration mes(s) to, metabolise / hydrolyse / digest / breakdown, maltose resent; s switched on; for enzymes to be synthesised; o, membrane transport / ease of passing through membrane; ; e.g. facilitated diffusion	max 2
170.	(a)	any d steril	des oxygen for <u>aerobic</u> respiration; letail, e.g. oxidative phosphorylation; e to prevent contamination; s fungus with substrate / prevents settling / bubbles help stirring / AW;	2

(b)	(i)	 (i) carbon – glucose / lactose; nitrogen – amino acids / nitrate ions / ammonium ions / yeast extract; 				
		A co	orn steep liquor for either but not both	2		
	(ii)	 water is for, cooling / removing excess heat; maintains, constant / optimum, temperature; respiration produces heat; which would, denature enzymes / kill cells; heat also produced by, stirrer / motor; 				
	(iii)		ct, enzyme action / metabolic rate; A denature enzymes of, buffer / acid / alkali / base;	2		
(c)	(i)	96 hours	;;	1		
	(ii)	when pri metaboli	les, rapid / exponential / main, growth phase; <i>ora</i> imary products are made / penicillin is a secondary ic product; f nutrients in X <i>or</i> penicillin produced when nutrients,			
			depleted;	3		
(d)	filter (to remove fungus); fungus washed (to remove penicillin); continuous countercurrent / chemical extraction; concentration; addition of potassium ions; precipitate crystals / (potassium) salts; solvents used to purify penicillin; AVP; e.g. dried, some are chemically modified, 99.5% pure max 3					
(e)	can genetically engineer microorganisms; ref to risk of infection; e.g. CJD with GH avoids problem with, side effects / allergic effects; A ref. to immune response large amount of product; grow microorganisms in small, area / volume; A less space required can be cultured anywhere in world; ethical advantages, qualified; ref to cost qualified; e.g. <i>insulin</i> uses cheaper feedstock (than for rearing pigs) AVP; AVP; e.g. high replication / growth rate					
	,		on of GH from brains slow process	max 4		

[20]

171.	(cortex is group of), specialised / similar / same, <u>cells</u> / <u>neurones;</u>	
	performing, similar / same / named, function;	
	brain is made of, more than one / different <u>tissue(s);</u>	
	carrying out more than one function / AW;	
		[3]

172. planning a task;

[1]

Ü

À**173.**

ulna;

- **174.** 1 proteins needed for repair / AW;
 - 2 more transcription of, DNA / genes;
 - 3 more translation;
 - 4 protein synthesis;
 - 5 named protein; e.g. actin / myosin / troponin / tropomyosin

ignore all refs to muscle contraction

- 6 more <u>aerobic</u> respiration;
- 7 so more, energy released / ATP produced;
- 8 (energy required for) condensation / anabolic, reactions;
- 9 (energy required for) formation of peptide bonds;
- 10 (energy required for) formation of extra mRNA;

max 5

[5]

175. (a) (i) penalise lack of units once in answer

increase in, elongation / length, with auxin concentration up to, 1.4 / 1.8, $\mu mol~dm^{-3};$

peak / maximum, at 1.4 μmol dm⁻³; decrease between 1.4 and 1.8 μmol dm⁻³; data quote with any 2 points; linear / directly proportional, before <u>1.2</u> or linear inversely proportional after <u>1.5</u>; **R** length decreases

(ii) mark first three factors temperature; age of stems; light, <u>intensity</u> / wavelength; concentration of dissolved, ions / salts; (concentration of) other named growth substance; AVP;;;

e.g. pH, genotype (of plant), concentration of named metabolite (e.g. glucose / amino acids), O₂ concentration, CO₂ concentration

 ${\bf R}$ 'amount of'

max 3

 (b) <u>cell</u>, enlargement / elongation; **R** stem enzyme synthesis; vacuolation; increase in plasticity of cell walls; (cell) wall softened by, H⁺ / lowered pH; high concentration of auxin causes inhibition of growth; AVP; e.g. cell division, mitosis, replication, cytokinesis, increase in number of cells
 R ref to uptake of nutrients PMT

(c)	assume answer is about plant growth substances unless stated otherwise treat refs to target, cells / tissue(s) and external stimuli as neutral		
	growth substances produced by, dividing cells / meristems;		
	ora hormones produced by, islets of Langerhans / alpha cells /		
	beta cells / endocrine gland / pancreas		
	growth substances move, in phloem / in xylem / from cell to cell;		
	ora hormones / named hormone(s), move in blood		
	growth substances usually produce a permanent change in the plant;		
	ora hormones produce reversible change in blood sugar		
	(GS) not homeostatic / no negative feedback; ora for hormones		
	R positive feedback A description of negative feedback		
	(GS) not protein / not polypeptide; ora insulin / glucagon, are proteins		
	AVP;	max 2	
			[10]

176. accept any three correct statements based on the data;;; for example populations of, mites / springtails, much greater / more than twice the number, in the climax forest than before trees established ora number of species of springtail greatest in the climax community ora small difference in numbers / no significant difference, between areas with young trees and areas with mature trees there were always (many) more mites than springtails in the sample

177. AATCCC / adenine adenine thymine cytosine cytosine; (first 6)

[1]

max 2

178. (a) provides sites for binding;

ref to, spindle fibres / microtubules; ref to genes being spaced out along chromosome; places to break and rejoin (during meiotic division); **A** chiasmata formation 'junk' implies no, function / purpose; *ora* function may not yet have been discovered; AVP; e.g. raw material for, evolution / natural selection, required for, cell division / mitosis / meiosis (b) straight line sloping up from left to right; (does not need to start at origin)

1

(c) ATP / NAD / NADP / RNA / phospholipid / GP / TP / RuBP / ADP / RUP / AMP / cAMP/ phosphocreatine / AVP; **R** DNA

[4]

1

179.	DNA codes for, protein / polypeptide; transcription and translation (or described); enzyme is globular (protein); 3 bases \equiv 1 amino acid; sequence of bases / triplets, determines, sequence of amino acids / primary structure; coiling / α helix / β -pleated sheet / particular secondary structure; determines projecting side groups; folding / bonding, for tertiary structure; 3-D structure is tertiary structure; AVP; e.g. ref. active site related to shape
	AVP; e.g. ref. active site related to shape 2 or more genes produce quaternary structure

[4]

- **180.** mark (i) and (ii) to max 3 each the question to max 4
 - (i) *nitrifying bacteria* convert, ammonium / NH4⁺, to, nitrate III / nitrite / NO2⁻;
 A ammonia / NH3 nitrite, converted to, nitrate (V) / NO3⁻;

A one mark for single step 'ammonium to nitrate (V)'

requires, aerobic conditions / oxygen / aerated soil; (nitrate (V) ions) can be, taken up / used, by plants;

(ii) *denitrifying bacteria*

remove nitrate (V) (ions) / convert nitrate (V) (ions) to nitrogen (gas); in, anaerobic conditions / oxygen poor soil / non-aerated soil; recycles nitrogen / further use of nitrogen (by fixing); prevents nitrogen being trapped / AW;

4 max

[4]

181. (i) look for prokaryote feature

no nucleus / no nuclear membrane / no nucleolus / DNA free (in cytoplasm); **R** DNA moving naked DNA / DNA not associated with proteins / no chromosomes; circular / loop, DNA; no, membrane-bound organelles / e.g.; smaller / 18nm / 70S, ribosomes; no ER; cell wall, not cellulose / polysaccharide and, amino acids / murein; AVP; e.g. mesosomes / plasmids

(ii) glycosidic (link) and peptide (bonds) (in correct context); condensation; ref. OH groups; ref. NH₂ and OH group; water, removed / produced / by-product; enzyme; AVP; e.g. energy required

- (iii) iron / Fe; *ignore pluses / minuses*
- (iv) treat enzyme as neutral

nitrogenase; leghaemoglobin; haemoglobin;

2 max

1

(v)	(nitrogen) fixation; A reduction	1	
(vi)	type of inhibition (competitive / non-competitive / reversible / irreversible); basic mode of action (e.g. binds to active site); detail;		
	consequence (e.g. prevents, substrate / nitrogen, from binding);	2 max	[10]

182. can fix nitrogen; does not deplete soil nitrogen / improves nitrogen content of soil (over time); allows cultivation of poor soil; reduces use of fertilisers; higher yield; AVP; e.g. reduce contamination of environment by fertilisers qualified cost ref. ref. leaching of nitrate

[2]

183. <u>primary</u> consumer / herbivore; ignore e.g.s **R** vegetarian

[1]

1